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Abstract  

This study is an attempt to find a more adequate model for the celebrated Canadian lynx 

data (1821 – 1934) than the classical models suggested by other researchers mentioned in 

the literature [Campbell and Walker (1977)]. In the previous in which studies the 

logarithmic transform to base 10 was used, in this study both logarithmic and square root 

transforms are used for the sake of comparison. Our results seem to suggest that the models 

fitted using logarithmic transformed data are in general superior to their counterparts under 

the square root transformation in terms of the significance of parameter estimates and their 

standard errors. The classical model ARMA (3,3) and our own model ARMA (3,0) were 

found to provide a reasonable model to logarithmic transformed lynx data. 

Key Words: Canadian Lynx data, The logarithm and square root transformation, ARMA 

(3,3), ARMA (3,0). 

 المستخلص  

حيوان   لبيانات  السابقة  الدراسات  في  المقترحة  النماذج  من  ملائمة  أكثر  نموذج  لايجاد  محاولة  عن  عبارة  الدراسة  هذه 
، أما في هذه الدراسة تم  10ففى الدراسات السابقة النموذج المقترح هو تحويلة اللوغاريتم الطبيعى للاساس    الوشق الكندى.

للرتبة   الذاتى  الانحدار  ونموذج  التربيعى  الجذر  تحويلة  نموذج  ARMA(3,0) 3اقتراح  اداء  أن  النتائج  اظهرت  حيث 
لا يوجد أختلاف بين نموذج تحويلة اللوغاريتم الطبيعى    بينما  تحويلة اللوغاريتم الطبيعى يفوق اداء نموذج الجذر الترببيعى

 .ARMA(3,0) 3ونموذج الانحدار الذاتى للرتببة 10للاساس 

http://www.hnjournal.net/
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1. Introduction 

A time series (TS) is a sequence of observations of one variable ordered in time. These observations 

are collected at equally spaced, discrete time intervals. Although in some cases the ordering may be 

according to another dimension. The measurement of some particular characteristic over a period of 

time constitutes a time series. It may be an hourly record of temperature at a given place or a 

quarterly record of gross national product. A time series is regarded to be continuous when 

observations are made continuously in time, also it is regarded to be discrete when observations are 

taken only at specific time usually equally spaced. [Anderson, T. W (1971)]. 

A stochastic process is a family of real valued random variables 𝑋1, 𝑋2, … where subscripts refer to 

successive time periods, and is denoted with {𝑋𝑡} Each of the random variables in the stochastic 

process has generally its own probability distribution and are not independent. Consider that for each 

time period we get a sample of size one (one observation) on each of the random variables of a 

stochastic process. Therefore, we get a series of observations corresponding to each time period and 

to each different random variable. The special feature of time series data is the fact that successive 

observations are usually not independent, and the analysis must take into account the time order of 

observations.  

 1.1 Collection Time Series Data 

We will discuss the importance of data and data collection, components of time series data, graphical 

presentation of data, and numerical presentations and transformations of time series data. Each of 

these procedures will be important in building our tools for time series analysis and forecasting 

methods. And where the first and one of the most important steps in the analysis of time series data 

and the subsequent development of a forecasting model is the collection of valid and reliable data. 

Analysis and forecasting are no more accurate than the data used to generate summary statistics and 

forecasts. The most sophisticated statistical techniques and forecasting model will be useless if 

applied to unreliable data. [Gaynor P.E. and R.C. Kirkpatrick (1994)] 

1.2 Nonstationary Process 

If we have assumed that underlying process is stationary, this implies that the mean, the variance, and 

auto covariance of the process are invariant under time transformations. Thus, the mean and the 

variance are constant, and the auto covariance depends only on the time lag. Many observed time 

series, however, are not stationary. In particular, most economic and business series exhibit time-

changing levels and/or variances. A changing mean can often be described by low-order polynomial 

in time. However, frequently the coefficients in these polynomials are not constant but vary randomly 

with time. Such nonstationary, in which the observations are described by random (or stochastic) 

trends, is usually referred to as homogeneous nonstationary. It is characterized by a behavior in 

which, apart from local level and/or local trend, one part of the series behaves like the others. 

1.3 Stationarity Process 

In order to analysis time series a good number of stochastic models have already been developed, a 

central feature in the development of time series models is an assumption of some of statistical 

equilibrium. An important class of stochastic models for describing time series is called stationary 

models, which assume that the statistical properties of the process do not change over time. Usually, a 

stationary time series can be usefully described by it is mean, variance and autocorrelation function. 

A process with approximate constant mean, variance and autocorrelation through time is called a 

stationary process. [Box-Jenkins, (1970)]. 

1.4 Autoregressive Process of Order p [AR(P)] 

The process {𝑋𝑡} is said to be an autoregressive process of order p; if it satisfies the difference 

equation:  

𝑋𝑡 + 𝑎1𝑋𝑡−1 + ⋯ + 𝑎𝑝𝑋𝑡−𝑝 = 𝜀𝑡 

Where 𝑎1, … , 𝑎𝑝 are constants and {𝜀𝑡} a purely random process (white noise). [Pristely, (1981)]. 
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1.5 Moving Average Process of Order q [MA (q)] 

The process {𝑋𝑡} is said to be a moving average process of order q if it can be written as 

𝑋𝑡 = 𝑏0𝜀𝑡 + 𝑏1𝜀𝑡−1 + ⋯ + 𝑏𝑞𝜀𝑡−𝑞 

where 𝑏1, … , 𝑏𝑞 are constants and {𝜀𝑡} is a stationary purely random process.  

Note that we may, without any loss of generality, assume that 𝑏0 = 1 or 𝜎𝜀
2 = 1. 

It is clear that we cannot assume that (𝑏0 = 1 or 𝜎𝜀
2 = 1) simultaneously. Since {𝑋𝑡} is a linear 

combination of uncorrelated random variables it is easy to see that {𝑋𝑡} is always a stationary process. 

It is sometimes useful to express a moving average process in autoregressive form. If this is to be 

done; the moving average parameter must satisfy the invariability condition which takes a form 

similar to that which has to be imposed on autoregressive to ensure stationarity. The autocorrelation 

function MA(q) cuts of after lag q (i.e. 𝜌𝑘 = 0; k > q); while the partial autocorrelation function is 

infinite in extent and dominated by damped exponentials. 

The {𝜀𝑡} used in constructing both the (AR and MA) process, but the difference between the two 

types of processes is that, in AR case 𝑋𝑡 is expressed as a finite linear combination of its own past 

values and the current value of 𝜀𝑡. [Pristely, (1981)]. 

1.6 Mixed Autoregressive Moving average process [ARMA(p,q)] 

Mixed autoregressive and moving average process having p-AR and q-MA terms, is given by: 

𝑋𝑡 + 𝑎1𝑋𝑡−1 + ⋯ + 𝑎𝑝𝑋𝑡−𝑝 = 𝑏0𝜀𝑡 + 𝑏1𝜀𝑡−1 + ⋯ + 𝑏𝑞𝜀𝑡−𝑞 

Where  𝑎𝑝 ≠ 0 and 𝑏𝑞 ≠ 0 are a constants and {𝜀𝑡} is a purely random process; and denoted by 

ARMA ( p,q ).   

For an ARMA process to be stationarity we have to assume that the roots of 𝛼(𝐵) = 0 are outside the 

unit circle and for invariability we have to assume that the roots of 𝛽(𝐵) = 0 are outside the unit 

circle. 

Many obvious advantages arise in using ARMA models which combine terms of both the AR and 

MA type, and in fitting models to observational data it is often possible to fit an ARMA models of 

smaller order than would be required in purely AR or MA models. [Fuller, (1976)]. 

2. The Lnx Data 

The Canadian lynx data set is the annual record of the number of the Canadian lynx "trapped" in the 

Mackenzie River district of the North-West Canada. These data are actually the total Fur returns, or 

total Fur sales, from the London archives of the Hudson's Bay Company in the years of 1821–1891 

and 1887–1913; and those for 1915 to 1934 are from detailed statements supplied by the Company's 

Fur Trade Department in Winnipeg; those for 1892–1896 and 1914 are from a series of returns for the 

MacKenzie River District; those for the years 1863–1927 were supplied by Ch. French, then Fur 

Trade Commissioner of the Company in Canada. By considering the time lag between the year in 

which a lynx was trapped and the year in which its fur was sold at auction in London, these data were 

converted in Elton and Nicholson (1942) into the number that were presumably caught in a given year 

for the years 1821–1934 which giving a total of 114 observations. 

3. Previous Studies  

In 1953 P.A.P. Moran suggested that the logarithms transformation is an optimal solution for the 

Canadian lynx data. Since Moran noticed a damping in the sample correlogram then he made the first 

model for this data which is AR (2). Figure (1) shows the logarithms (to base 10) of the annual 

trapping of the lynx over the period (1821 – 1934), giving a total of 114 observations. This is a 

celebrated set of data and has been the subject of great deal of study among time series analysis by 

Campbell and Walker (1977) who gave an interesting review of previous analyses. The dominant 

feature of the graph is that the data contain persistent oscillations with a steady period of 

approximately ten years, but with irregular variations in amplitude. The sample autocorrelation 
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function is shown in figure (2), where the strong periodic behavior of this function confirms the 

"Pseudo periodicity" in the data. However, the autocorrelation also shows some degree of damping, 

which is consistent with the irregular variations of amplitude in the data. The form of both the data 

and the autocorrelation function suggests that there is a strictly periodic component corrupted by 

“error”, alternatively that the data conform to some "pseudo periodic" type of ARMA model. The 

former type of model is that chosen by Campbell and Walker (1977). The above account on the lynx 

data was taken almost literary from Priestley (1981, p384).  

Figure 1: the logarithms (to base 10) of the lynx data over the period (1821 – 1934) 

 

Figure 2:The sample autocorrelation function of logarithms the data 

 

4. Methodology 

In many aspects of time series analysis, data transformations are useful, often for stabilizing the 

variance of the data. Non constant variance is quite common in time series data. A very popular type 

of data transformation to deal with non-constant variance is the Power family of transformations. 

given by: 
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𝑥𝜆 = [

𝑥𝜆 − 1

𝜆�̂�𝜆−1
                      𝜆 ≠ 0

�̂� ln 𝑥                         𝜆 = 0

 

Where �̂� is the geometric mean of the observations {�̂� = exp [(
1

𝑇
) ∑ 𝑙𝑛𝑥𝑖

𝑇
𝑖=1 ]}. If 𝜆 = 1, there is no 

transformation. Typical values of 𝜆 used with time series data are 𝜆 = 0.5 (a square root 

transformation), 𝜆 = 0 (the log transformation), 𝜆 = −0.5 (reciprocal square root transformation), 

and 𝜆 = −1 (inverse transformation). The divisor �̂�𝜆−1 simply a scale factor that ensures that when 

different models are fit to investigate the utility of different transformations (values of 𝜆), the residual 

sum of squares for these models can be meaningfully compared. The reason that 𝜆 = 0 implies a log 

transformation is that (
𝑥𝜆−1

𝜆
 ) approaches the log of x as 𝜆 approaches zero. Often an appropriate value 

of 𝜆 is chosen empirically by fitting a model to 𝑥(𝜆) for various values of 𝜆 and then selecting the 

transformation that produces the minimum residual sum of squares. The log transformation is used 

frequently in situations where the variability in the original time series increases with the average 

level of the series. When the standard deviation of the original series increases linearly with the mean, 

the log transformation is in fact an optimal variance-stabilizing transformation. The log 

transformation also has a very nice physical interpretation as percentage change [Montgomery 2008]. 

When the data has exponential growth, the optimal transformation is taking the logarithm of the 

values which called (log transform). The problem with protentional curve that is the growth rate not 

clear how much would be. 

As far as the lynx data under square root is concerned, to our knowledge no attempt was made to 

study its correlation structure under this transformation. The square root transformed lynx data is 

plotted in figure (3) with its sample autocorrelation function in figure (4). 

Figure 3: the square root of the lynx data over the period (1821 – 1934) 
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Figure 4:The sample autocorrelation function of square roof of the data 

 

5. Analysis 

The ARMA models of order ARMA (3, 3) and ARMA (3.0) under both transformations (the 
logarithm to base 10 and square root) were fitted to the lynx data. The results are given in tables (1 
and 2) which include: parameter estimates, standard errors, calculated p-values, p value for Ljung 
Box test, stationary R square, normalized Bayesian information criterion (BIC), root mean square 
error (RMSE), mean absolute percentage error (MAPE). 

Table 1:The results of the fitted ARMA(3,3) model under both transformations 
Estimates The logarithmic transformed The square root transforms 

constant 2.906 34.144 

�̂�1 
SE 
P-Value 

2.083 
0.127 
0 

1.996 
0.006 
0 

�̂�2 
SE 
P-Value 

-1.785 
0.201 
0 

-1.647 
0.006 
0 

�̂�3 
SE 
P-Value 

0.499 
0.124 
0 

0.407 
0.003 
0 

�̂�1 
SE 
P-Value 

0.905 
0.123 
0 

0.947 
0.098 
0 

�̂�2 
SE 
P-Value 

-0.099 
0.144 
0.493 

-0.028 
0.124 
0.825 

�̂�3 
SE 
P-Value 

-0.490 
0.102 
0 

-0.591 
0.104 
0 

P-value Ljung Box 
test 

0.055 
0.124 

R-Square 0.864 0.837 
BIC -2.813 4.472 
RMSE 0.212 8.090 
MAPE 6.166 21.846 
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Table 2:The results of the fitted ARMA(3,0) model under both transformations 

Estimates The logarithmic 

transformed 

The square root transforms 

constant 2.903 34.127 

�̂�1 

SE 

P-Value 

1.287 

0.095 

0 

1.264 

0.095 

0 

�̂�2 

SE 

P-Value 

-0.577 

0.146 

0 

-0.628 

0.142 

0 

�̂�3 

SE 

P-Value 

-0.118 

0.095 

0.220 

-0.063 

0.096 

0.515 

P-value Ljung Box test 0.006 0.011 

R-Square 0.832 0.792 

BIC -2.755 4.564 

RMSE 0.232 9.015 

MAPE 6.834 27.918 

 

Figure 5:The residuals series of ARMA(3,3) model 

 

 

 



                           Humanities and Natural Sciences Journal   Nasir et al. March, 2024    www.hnjournal.net 

 

 Page | 336                                               

Analysis of the Canadian Lynx Data Under Two Different Transformations                                      HNSJ   Volume 5. Issue 3                                  

Figure 6:The residuals series of ARMA(3,0) model 

 

 

Figure 7:The autocorrealtion function of residuals series for ARMA(3,3) model 
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Figure 8:The autocorrelation function of residuals series for ARMA(3,0) model 

 

 

Figure 9:Histogram of residuals series for ARMA(3,3) model 

 

 



                           Humanities and Natural Sciences Journal   Nasir et al. March, 2024    www.hnjournal.net 

 

 Page | 338                                               

Analysis of the Canadian Lynx Data Under Two Different Transformations                                      HNSJ   Volume 5. Issue 3                                  

Figure 10:Histogram of residuals series for ARMA(3,0) model 

 

6. Discussion and Conclusion 

The results in tables (1 and 2) seem to suggest that the models fitted under logarithmic transformation 

are in general better than their counterpart models fitted under square root transformation. The Lujng 

box failed to give non-significant results (p > 0.05) accepting the randomness especially ARMA (3,0) 

model. The two models ARMA (3,3) which among the classical models mentioned in previous 

studies in the literature and our own model ARMA (3,0) seem to be plausible models, because it 

appears that they satisfy the first stage indication of a good model where parameter estimates are 

significant except one parameter estimate in the case the ARMA (3,3) model. The values of R square, 

RMSE, MAPE and normalized BIC are slightly smaller in the case of the ARMA (3,3) model than in 

the ARMA (3,0) model case. ARAM (3,3) model under logarithmic and square root transformation 

give non-significant results for Lujng-Box test which means that the assumption that the errors are 

white noise cannot be rejected, whereas in ARAM (3,0) model the errors term did not pass the test. 

However, the plots of series, autocorrelation function, and histogram of the residual for both models 

indicate the randomness of the errors where no apparent trend (figures 3 - 10). 
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