

RESEARCH TITLE

 1 Computer Science Department University of Benghazi, Benghazi, Libya

Email: eslam.alaraibi@uob.edu.ly

2 Computer Science Department University of Benghazi, Benghazi, Libya

Email: tfanoush@gmail.com

 HNSJ, 2024, 5(2); https://doi.org/10.53796/hnsj52/17

Published at 01/02/2024 Accepted at 12/01/2024

HNSJ

Humanities & Natural

Sciences Journal

ISSN: (e) 2709-0833

www.hnjournal.net

Peer-Reviewed Journal
Indexed at: NSP - SJIF

Impact Factor 2022 = 4.91

Automatic License-Plate Recognition Using Optical

Character Recognition

Eslam Ali Eldharif1 Taha Manour Fanoush2

Abstract

Abstract— In the contemporary era, the number of vehicles on the roads has been growing

exponentially, which raised the need to automate the process of controlling traffic

violations. In this work, we aim to develop a license plate recognition method using the

Optical Character Recognition technology and Google Brain’s Tensorflow classification

library to accomplish the mission of extracting and recognizing characters from license

plate images. Moreover, this method can also be helpful for other character recognition

applications.

Key Words: raster; pixel; gray-scaling; binarization; threshold; connected component;

optical character recognition; image classification

mailto:eslam.alaraibi@uob.edu.ly
mailto:tfanoush@gmail.com
http://www.hnjournal.net/

 Humanities and Natural Sciences Journal Eldharif & Fanoush. February, 2024 www.hnjournal.net

 Page | 252

Automatic License-Plate Recognition Using Optical Character Recognition HNSJ Volume 5. Issue 2

I. INTRODUCTION

According to the automotive trade journal Ward's

Auto, the total number of vehicles on the roads

has crossed 1 billion vehicles during the year 2010

[1]. Therefore, new challenges have emerged for

traffic police, such as red-light violations, speed

limit violations and parking problems.

Consequently, in order to control and overcome

these challenges, the traffic police authorities

should consider installing surveillance devices,

such as red-light cameras or parking booth

cameras at the crossroads, highways and parking

lots, to keep track of vehicles on the road.

However, the unique number on the vehicle

license plate can be used to identify all vehicles in

a certain region. Therefore, the license plate

number is the primary and the most widely

accepted identifier for all vehicles around the

globe. However, it would require a huge labor

force to check the images, note down the vehicle’s

registration number and finally forward it to the

competent authorities. Accordingly, we had to

come up with a technique that makes the computer

able to recognize the Libyan vehicle license plate

number.
As indicated in Fig.1, the current Libyan license
plates are of two forms, the rectangle-like form
that has only one line of characters/numbers and
the square-like form that has two lines of
characters/numbers.

Figure 1. The two forms of the current

Libyan license plate.

To identify and read this kind of license plates,

several image- processing algorithms need to

be implemented on the footage that was taken

by the surveillance device in order to convert

that image into text format before it can be used

by other parts of the system. Accordingly, what

we aim to develop is an Automatic License-

Plate Recognition (ALPR) system that is

capable of manipulating the license-plate

image, and reading the characters/numbers on

that image. ALPR is a combination of several

techniques, such as object detection, image

processing and pattern recognition. It is also

known as automatic vehicle identification, car

plate recognition, automatic number plate

recognition, and optical character recognition

(OCR) for cars [2]. OCR is the electronic

conversion of handwritten, typewritten or

printed text from still or motion images to

machine-encoded text. Other common uses

include scanning of books for electronic

retrieval or scanning to edit documents

electronically [3].

We believe that the development of such

system can be very beneficial, and considering

the conclusions and the satisfying results that

were attained, we think this work represents an

“added value” to the scientific researches in

this field.

II. MATERIALS AND METHODS

This section will illustrate the concepts and

techniques that were used and how are they

going to help in accomplishing the mission

successfully. It will also include an analysis of

the problems and issues that might appear

during the implementation, and a suggestion of

a design for an algorithm that will definitely

overcome these challenges.

A. Pixels and Images

A pixel or a ‘Picture Element’ is a single

squared point in an image. Moreover, images

are generally displayed by dividing the screen

that is displaying the image into hundreds of

thousands or maybe millions of pixels,

arranged in rows and columns, although the

distance between these pixels is so small that

they would appear connected. However, on

color monitors, each pixel is actually composed

of three dots: red, green and blue, as they

should all assemble at the same point admirably

[4]. Furthermore, an image is nothing but a

two- dimensional signal, which is defined by

the mathematical function f(x, y), where x and

y are the horizontal and vertical coordinates

respectively, and the value of f(x, y) at any

point

is related to the brightness (color) at point (x, y)

and gives the pixel value at that point of an

image, as images are often defined over a

rectangle and always continuous in amplitude

and space [5].

However, images are of two types: vector

images and raster images, and since we are not

going to deal with any vector images, we will

only discuss raster images in a comprehensive

manner. Raster (bitmap) images are what you

typically think of when you hear the word

“image”. They are the type of images that are

created with pixel-based programs or captured

with a camera or a scanner. Nonetheless, a raster

 Humanities and Natural Sciences Journal Eldharif & Fanoush. February, 2024 www.hnjournal.net

 Page | 253

Automatic License-Plate Recognition Using Optical Character Recognition HNSJ Volume 5. Issue 2

image is a dot matrix data structure in the form

of a two-dimensional array, which maps colors

to pixels in a particular location, as they are

more common in general and are widely used on

the web. For illustration, a good example of how

raster images are structured is shown in Fig. 2

[6] [7].

Most pixel-based image editors work using the

RGB color model, but some also allow the use

of other color models such as the CMYK color

model. Nevertheless, the RGB color model is

one of the most widely used color representation

method in computer graphics as it uses a color

coordinate system with three primary colors: red

(R), green (G) and blue (B), where each of these

colors can take an intensity value ranging from

‘0’ (lowest) to ‘255’ (highest). However, mixing

these three primary colors at different intensity

levels produces a variety of colors, as the

collection of all the colors obtained by such a

linear combination of red, green and blue forms

the cube shaped RGB color space as in Fig. 3

[8][9].

Figure 2. How each pixel has different color

values in raster images.

Figure 3. A diagram showing the RGB color

space [10].

B. Image Pre-processing

Pre-processing is a popular name for the

operations performed on images for further use.

However, image gray-scaling and image

binarization, which both will be discussed in the

following, are examples of these operations, as

the aim of this type of operations is the

improvement to the image data that suppresses

unwilling distortions or enhances some image

features that are important for further processing

[11].

1) Image Gray Scaling:

‘A grayscale (gray level) image is a simple

digital image in which the only colors are

shades of gray. Actually, the gray color is one

in which all the components of red, green and

blue have equal intensity in RGB space.

Therefore, it carries only intensity information

for each pixel’. Meanwhile, the process of

converting a color image to a grayscale image

is called gray scaling. However, to grayscale an

image you should go through every pixel in the

image calculating the average of the RGB

channels’ values of that pixel, then you should

assign each channel of the RGB with the

resulting average value. An example of a color

wheel image and its equivalent grayscale form

is shown in Fig. 4 [12].

Figure 4. A color wheel and its grayscale form.

2) Image Binarization:

‘A binary image is a digital image which pixels

have only two possible intensity values, which

are normally displayed as black and white.

Numerically, the two values are often 0 for

black, and either 1 or 255 for white’. By and

large, the color used to represent the object in

the image is the foreground color, while the

color that represents the rest of the image is the

background color. Thus, the process of

converting an image to a binary image is called

binarization. However, to binarize an image it

must first be converted to a grayscale image,

and then by applying a specific threshold value

on the image, all pixels will undergo a test that

determines whether the pixel should be black or

white, depending on that threshold value. An

example of a grayscale image and its equivalent

binary form is shown in Fig. 5 [12].

Figure 5. A grayscale image and its equivalent

binary form.

In general, the threshold value is adaptive for

each image and can be determined using one of

 Humanities and Natural Sciences Journal Eldharif & Fanoush. February, 2024 www.hnjournal.net

 Page | 254

Automatic License-Plate Recognition Using Optical Character Recognition HNSJ Volume 5. Issue 2

the clustering algorithms (e.g., Otsu’s Method,

Feng’s Method, Gatos et al.’s Method and

Darek Bradley’s Method). However, we have

chosen Otsu’s Method as our clustering

algorithm, due to its speed and ability to handle

different histograms of images. Consequently,

after binarizing the image, the program will

turn the image into an equivalent two-

dimensional array of zeros and ones, where a

zero refers to black (0) and a one

refers to white (255). In any case, the reason

behind this operation is to simplify the process

of manipulating and dealing with the image

pixels in the following phases, considering that

dealing with only one of the three RGB

channels’ values is much easier than dealing

with all of them. Subsequently, the resulting

two-dimensional array that represents the binary

image will make the program able to segment

the image into separate components.

C. Image Segmentation

Briefly, image segmentation is the identification

of regions of interest in the image. In other

words, it is the process of partitioning the image

into a collection of images of the components

that are suspected to be characters of a license

plate, which later need to be recognized and

saved as text. However, to achieve image

segmentation, we have gone across two

approaches.

1) Horizontal and Vertical Projection:

This method handles the segmentation of the

binary image by scanning the image array in

two ways. Knowing that the characters in the

image are arranged in the form of line(s), we are

trying to determine the top and bottom edges of

each line to obtain the parts of images that

represent each line independently. In such a

manner, the first way was to scan the image

row-by-row, looking for a foreground row - a

row that has black (foreground) pixels

(columns) - that refers to the top edge of the first

line of characters. At that instant, it starts

copying the next rows’ pixels (columns) in a

new image array starting from that row and, in

the same time, keeps looking for a background

row - a row whose pixels (columns) are all

white (foreground) pixels – until it finds one.

However, when it finds a background row, it

stops copying and starts looking for another

foreground row, to do the same thing until it

reaches the last row in the image. Fig. 6 shall

illustrate the process of obtaining the images of

character lines.

Figure 6. An illustration of the

horizontal projection.

The second way was to obtain each individual

character’s image by going through each “line

image” column-by-column, looking for a

foreground column that refers to the left edge of

the character. However, when it finds a

foreground column, it starts copying the next

columns’ pixels in a new image, starting from

that column, as it keeps looking for a

background column at the same time until it

finds one. However, when it finds a background

column, it stops copying and starts looking for

another foreground column to do the same

thing until it reaches the last column in the

current “line image”. Fig. 7 illustrates the

process of obtaining images of characters.

Figure 7. An illustration of the vertical projection.

As a result, we expect to obtain a set of images,

each of which containing one of the characters

and ready for the next phase (the recognition

phases).

The main advantage of this method is that it

keeps the original ordering of characters, which

is resulting from the horizontal and vertical

scanning. Overall, the Horizontal and Vertical

Projection method was thought to be a good

solution for the segmentation problem,

although we faced several issues while trying to

implement it. One of these issues was the plate

border issue, where a plate image usually

contains a border outlining all the image

 Humanities and Natural Sciences Journal Eldharif & Fanoush. February, 2024 www.hnjournal.net

 Page | 255

Automatic License-Plate Recognition Using Optical Character Recognition HNSJ Volume 5. Issue 2

boundaries, which may not be helpful for the

horizontal/vertical projection. Therefore, we

tried trimming the unwanted border parts from

the image; however, the trimming solution was

unsuccessful because of different plate forms

and different sizes of the images that the

program might cope with. In addition, the other

issue was the smudge issue, where a smudge of

mud or dirt on the plate might connect two

lines/characters together, leaving no

“background row/column” between them.

Therefore, we decided to leave this method,

and start looking for another approach to

segment the plate image.

2) Connected Component Labeling:

While we were searching and trying to come up

with another approach to segment the image,

we found what is known as the Connected

Component Algorithm, which can be optimally

used for such a task. However, a connected

component is a set of connected pixels that

share a specific property. In other words, the

two pixels (p and q) are said to be connected, if

there is a path of pixels with the same property

from the first pixel (p) to the second one (q),

where a path is an ordered sequence of pixels

such that any two adjacent pixels in the

sequence are neighbors. Accordingly, a

component-labeling algorithm finds all

connected components in an image and assigns

a unique label to all points in the same

component [13].

An illustrative example in Fig. 8 shows the

result of labeling components in a simple

(11×13) image using the Connected Component

Labeling algorithm.

Figure 8. An example of the result of Connected

Component Labeling.

The two approaches that can be used to

implement the Connected Component Labeling

are the recursive algorithm and the sequential

algorithm. The recursive algorithm is quite

straightforward. Nevertheless, it is inefficient, as

the time taken by the algorithm increases rather

quickly when the image size increases. Thus,

we will not get into the details of this approach.

On the other hand, the sequential algorithm

consists of two passes. In the first pass, the

algorithm goes through each pixel, checking the

pixel above the current pixel and the one to the

left of the current pixel, and in the same time, it

assigns a label to the current pixel depending on

the label value of these (previously labeled)

pixels. In the second pass, it starts over from the

very first pixel, and cleans up any mess it might

have created in the previous pass, such as

multiple labels for the same region (component)

[14].

Although, the typical CCA that we have found

also had a few issues, the main issue of the

typical CCA was the ordering issue, where the

components obtained from the CCA might not

be in the right order. In other words, the CCA

might lose the original ordering of the plate

characters, which may not be helpful in

recognizing license plate characters. Fig. 9 will

show how the CCA could lose the original

ordering of the characters.

 Figure 9. An example of the unordered CCA

labeling result.

As you may have noticed, the peak of character

‘7’ is higher than the peak of character ‘1’.

Therefore, character ‘7’ was labeled before

character ‘1’ and was given a smaller label than

the one given to character ‘1’. Nonetheless,

according to the original ordering of the image

characters, character ‘1’ should come first and

then comes character ‘3’ and finally character

‘7’. Keeping in mind that a real plate image

would have a huge number of pixels where the

differences between the character peaks would

not be noticeable as the ones shown in fig. 9.

However, we succeeded in finding a good

solution for this issue, which is going to be

explained in details.

For the ordering problem, we suggested

adjusting the algorithm in a way that maintains

 Humanities and Natural Sciences Journal Eldharif & Fanoush. February, 2024 www.hnjournal.net

 Page | 256

Automatic License-Plate Recognition Using Optical Character Recognition HNSJ Volume 5. Issue 2

the original ordering of the plate characters. To

illustrate more, this modification is based on

sorting the components of the image depending

on the coordinates of these components, where

the algorithm obtains the coordinates of the

first composing pixel of each component (the

first pixel of each label) to keep these

coordinates associated to their labels. However,

before the beginning of the sorting process, it

checks whether the input plate image was a

rectangle-like or a square-like image. In case it

was a rectangle-like image, it means that this

image has only one line of characters/numbers.

In the other case, when it is a square-like

image, it finds that this image contains two

lines of characters/numbers and has to be

divided into two parts, an upper part, and a

lower part, where each part should contain a

single line of characters/numbers.

Consequently, when the image is rectangle-

like, the algorithm checks the horizontal

coordinates for each component (label) in the

image, and sorts these components depending

on their horizontal coordinates. As shown in

fig. 10, the horizontal coordinates get higher as

they move towards the right, and since

characters are arranged from left to right, the

leftmost character is the first one, followed by

the next character/s on its right side. On the

whole, when the sorting process is finished, the

algorithm would obtain a sorted list of all the

components (labels) as shown in fig. 11.

Figure 10: An example of a simple rectangle-

like plate image.

Figure 11. The sorted list of components of

the image shown in fig. 10.

As you can see in fig. 11, label ‘3’ would go

first in the sorted list, label ‘7’ would be the

second and so on. Overall, sorting the

components depending on their horizontal

coordinates would work perfectly on the

rectangle-like plates. However, when it is a

square-like plate, the algorithm, as mentioned

before, must first split the image array into two

separate parts, an upper part, and a lower part,

and then sorts both parts as if they both were

rectangle-like images. The upper part goes

from the beginning of the image (the first row)

to middle of the image (image height/2), while

the lower part starts right after the middle of the

image until the end of the image (the last row)

as illustrated in fig. 12. In any case, each part

would be treated independently, and when the

process of sorting the components for both

parts finishes, the algorithm combines the

components of each part in a single sorted list

containing the components of the first (upper)

part followed by the components of the second

(lower) part.

Figure 12. An example of a simple square-like

plate image.

The reason behind splitting the square-like

image array into two parts is that this plate

image has two lines of characters/numbers,

where the characters (components) of these

lines share the same horizontal coordinates.

Therefore, they cannot both be sorted in the

same image array. As shown in the fig. 13, the

upper part labels would be sorted from label ‘2’

to label ‘4’ and followed by the labels of the

lower part from label ‘8’ to label ‘9’.

Figure 13. The sorted list of components of the

image shown in fig. 12.

Furthermore, there was a issue with some of the

English characters such as (K, V, W, X and Y),

where the CCA fails to label the components

representing these characters with only one

label, due to the top right edge that exists in all

 Humanities and Natural Sciences Journal Eldharif & Fanoush. February, 2024 www.hnjournal.net

 Page | 257

Automatic License-Plate Recognition Using Optical Character Recognition HNSJ Volume 5. Issue 2

of these characters. Fig. 14 shows an example of

this issue with the English letter ‘Y’ as a

connected component.

Figure 14. The ‘Y’ letter as a connected

component after the first pass.

Fig. 14 shows the problem that the CCA faces

when labeling the letter ‘Y’ as a component,

where all the labels (2, 3, 4, 5 and 6) should be

changed to ‘1’ in the second pass of CCA so

the component of interest would only have one

label after the second pass. However, the labels

‘1’ and ‘2’ did not have the chance to meet in

the first pass. Therefore, they were not

compared to one another; accordingly, the

dictionary (Hash Map) did not have label ‘2’ as

a value to the key ‘1’ to correct it in the second

pass. As a result, the output of the second pass

would be as shown in fig. 15.

Figure 15. The letter ‘Y’ component facing the

top-right edge issue after the second pass.

As shown in fig. 15, the CCA fails to label the

letter ‘Y’ properly. In fact, it fails to label all the

letters that have the same top right edge as in the

letters (K, V, W, and X). Overall, as long as the

Libyan license plate does not contain any English

letters this issue will not be our biggest concern at

present. Although, we did attain a good solution

to this issue, which is going to be explained in

details. For the top-right edge issue, we

suggested adding a couple of passes after the

original two passes of the CCA are finished. In

the so-called ‘third pass’, the algorithm is going

to work on scanning the image array and

repeating only a part of the first pass, where it

will look for all the non-zero pixels that have two

non-zero neighbors with different labels, compare

the labels (numerically), and finally assign the

minimum label to the current pixel. Regularly,

based on the comparison result, a new piece of

information is added to the dictionary (Hash

Map) that will be used in the next pass. Finally,

the last pass is exactly the same as the second

pass of the CCA, where the algorithm calls the

function that implements the second pass again

after finishing the newly created ‘third pass’,

owing to correct any false labeling that might

have occurred. Overall, the result of this

repetition is labeling all the components

appropriately, including the components that

represent characters that have a top-right edge.

Optimistically, this modification would work well

for all the Libyan license plates, in addition to all

the plates that have the same dimensions and the

same structure. In this way, the CCA would work

well for segmenting the image into separate

components, as well as maintaining the original

ordering of these components.

D. Image Classification
Image classification is the process of marking
images with particular predetermined
categories. It is done with the help of image pre-
processing, image sensors, object detection,
object segmentation, feature extraction and
object classification. Meanwhile, there are
several classification techniques for image
classification, e.g., Artificial Neural Networks,
Decision Trees, Support Vector Machines and
Fuzzy Classification [15]. In this work, we have
utilized Google Brain’s TensorFlow classifier
for the classification process, which is an open-
source software library for high-performance
numerical computation. It was originally
developed by engineers from the Google Brain
team within Google’s AI organization, as it was
meant for different types of perceptual and
language understanding tasks [16]. However,
we have only used a few classes from the
TensorFlow library, which are specialized in
character recognition, where some of these
classes are used for training the classifier, while
others are used for the classification
(recognition) process itself. On the whole, the
proposed algorithm for the suggested
modification of the typical CCA is as follows.

1. Start.
2. Load image file.
3. Do pre-process.
4. Convert image to an array.
5. Label connected components.
6. If the image is rectangular (Yes: go

to step No.8), (No: continue).
7. Split into two parts.
8. Sort image(s) characters.
9. Save characters.
10. Recognize characters.
11. Output text.
12. Stop.

 Humanities and Natural Sciences Journal Eldharif & Fanoush. February, 2024 www.hnjournal.net

 Page | 258

Automatic License-Plate Recognition Using Optical Character Recognition HNSJ Volume 5. Issue 2

III. IMPLEMENTATION AND RESULTS

A. Implementaion

Using what was previously introduced, and

according to the designed algorithm, the

implementation will be carried out through a

series of steps as follows:

1) Image File Loading: The first step is

finding a way to take an image file in a readable

data format as an input to the program, which

was done using Java’s Image Library. Fig. 16

will show the plate image that we are going to

take as an example.

Figure 16. An example of a square-like

Libyan plate image.

2) Image Preprocessing: After getting the

input image file, the next step is to perform a

few operations on the image to prepare it for

the next phases. However, the first operation

works on Grayscaling the image or turning

the original color image into a grayscale image

as shown in fig. 17, by calculating the average

of the RGB channels’ values and assigning all

the RGB channels with the resulting average to

the current pixel.

Figure 17. Turning the original color image

into a grayscale image.

After obtaining a grayscale image, it should be

turned into a binary image with the help of a

specific threshold value that is determined by

implementing Otsu’s binarization method. Thus,

the result of binarizing the grayscale image is

shown in fig. 18.

Figure 18. Result of binarizing the grayscale

image.

3) Convert the Image to an Array: Since all

the RGB channels’ values of each pixel are

of the same value, the obtained binary

image should be turned into an equivalent

two-dimensional integer array of 0s and 1s.

Where ‘0’ refers to black (0) and ‘1’ refers

to white (255). Since the image array may

have hundreds of thousands or even

millions of pixels, it cannot be

hypothetically represented in a single

typical A4 page. Therefore, we will only try

to show representations of a small part of

the image array, hoping that it will illustrate

the idea. Fig. 19 shows a hypothetical

representation of how the character ‘2’ is

going to be represented in the real image

array.

Figure 19. A representation of a part

of the image array. Figure 19. A representation of a part of the image array.

The resulting two-dimensional array that

represents the binary image, as illustrated in

fig. 19, will make the program able to segment

the image into separate components.

4) Labeling and Sorting Connected

Components: As mentioned before,

segmenting the image into a set of

components requires labeling each

component with a unique label as in fig 20.

Therefore, the modified CCA that was

suggested earlier should handle the labeling

process.

Figure 20. A simple representation of

the result of labeling connected

components.
After labeling every component in the image
array, we added a simple operation that could
help to get rid of the components that are too
small to be characters as well as the components
that are too big. The operation removes all

 Humanities and Natural Sciences Journal Eldharif & Fanoush. February, 2024 www.hnjournal.net

 Page | 259

Automatic License-Plate Recognition Using Optical Character Recognition HNSJ Volume 5. Issue 2

connected components that have less than a
certain number of pixels or more than a certain
number of pixels based on the plate image size.
Next, the program should check if this image
was a square-like image or not, where a square-
like image should be divided into two horizontal
parts as mentioned in the modified CCA. After
that, the program is going to sort the
components according to their horizontal
coordinates in order to obtain a sorted list of all
the image components to be able to segment and
save the characters’ images in the right order
during the next step.
5) Saving the Characters: Saving the
components’ (characters’) images after finishing
the labeling and sorting process requires
determining the height and the width of each
component to create an image with the
appropriate dimensions for all the components
in the image, in addition to copying each
component’s pixels in its own newly created
image. Determining the height and width of the
components is done by scanning the image
while seeking the first pixel that has the value of
each label in the order of the sorted list of labels.
However, when the program finds the first pixel
of the first label, it loops through all the pixels
containing that label, looking for the highest and
lowest points (pixels) for both horizontal and
vertical coordinates. Successively, it subtracts
the lowest point (index) from the highest point
of the horizontal and vertical coordinates, in
order to determine the dimensions of that
component to create an image object with the
same dimensions. Consequently, the newly
created image’s pixels are going to be filled with
the component’s pixels to obtain an image that
contains only this single component (character).
Regularly, the same thing should go for all the
remaining labels (components) in the image.
Fig. 21 shows how some of the characters of the
plate image would appear after the segmentation
process.

Figure 21. An example of the
segmentation phase result.

However, since the TensorFlow classifier
requires specific dimensions for input images,
we should adjust the output size of the
segmented images before sending them to the
classification phase. Therefore, images need to
be resized to specific dimensions as the library

requires, which are 200 pixels in both width
and height, to create the image file before
saving it in the specified directory. For
illustration, Fig. 22 shows the actual results of
the segmentation phase.

Figure 22. The result of the segmentation

process.

6) Classification and Character Recognition:

obtaining only the containing image of each

character is not enough, where a classifier

must be used to recognize the images

obtained from the segmentation phase. As

mentioned before, the TensorFlow classifier

will be used in the classification process, as it

must be provided with abundant, real, and

adequate data to be able to give accurate and

correct results. Nevertheless, after finishing

the image segmentation phase, the program is

going to apply the classification process to

recognize the obtained components, and give

the desired results by using the classifier that

was provided with the required data and

trained properly. Noting that both the amount

of data and the training rate of the classifier

have a great impact on the accuracy of the

recognition process. Finally, the program will

show the text obtained from the classification

process.

B. Results

Through what was previously introduced about

the implementation of the software application,

we can say that we have attained some

fascinating results, as we consider those results

doubtlessly beneficial for this particular case

study, which is the recognition of characters of

Libyan license plates. In any case, Fig. 23

shows the result of segmenting and recognizing

characters of a Libyan license plate, as well as

the time taken to segment the image

(segmentation time), accompanied with the time

of the whole process (total time) including the

classification phase time.

 Humanities and Natural Sciences Journal Eldharif & Fanoush. February, 2024 www.hnjournal.net

 Page | 260

Automatic License-Plate Recognition Using Optical Character Recognition HNSJ Volume 5. Issue 2

Figure 23. The user interface of the software

application.

Based upon that, fig. 24 is going to show a table

of different license plate forms, and an

illustration of the segmentation process and the

average time of segmenting each character. In

addition, it is going to show how the output

would look like and how it is going to change

before it goes as an input to the recognition

phase. Finally, it displays what results were

obtained, each of which combined by an

accuracy percentage.

Figure 24. Results of recognizing characters from

different license plates.

IV. CONCLUSION

We believe that this work is considered as an

“added value” to the scientific researches in this

field, where the proposed algorithm has

presented actual set of solutions for recognizing

characters from license plates. Keeping in mind

that the outputs of applying this algorithm

represent a treasure in the form of text for many

governmental and non-governmental

applications. In addition, this system can also

be adjusted in a way that makes it capable of

recognizing characters from paper documents.

However, although it is possible to prepare the

system for dealing with most types of plates,

the license plates of vehicles in the United

States of America are a bit difficult to

recognize, because the background of the

characters in U.S. license plates may contain

different shapes and colors that could make the

process more complicated. Regardless, we

believe that the design of this algorithm is

imperfect and upgradable as we intend to

improve it in the future, where it can be

optimized to perform the “plate localization

phase”, which takes an image of a car on the

road and locate the plate image as a first step

before processing the image. Furthermore,

other image preprocessing techniques can also

be added to the algorithm (e.g. image skewing,

image rotation, and image enhancement

techniques) to make it capable of handling

images of crooked plates as well as coping with

low-resolution images.

Overall, we are optimistically looking forward

to accomplishing these improvements as well

as overcoming these limitations in the near

future.

REFERENCES

[1] Sousanis J. (2011). World Vehicle

Population Tops 1 Billion Units [ONLINE].

 Wardsauto. Available at:

https://www.wardsauto.com/news-

analysis/world-vehicle- population-tops-1-

billion-units (Accessed: 1 August 2018).

[2] Kawade S., Mukhedkar M. (2013). A Real

Time Vehicle’s License Plate Recognition

System [ONLINE]. International Journal of

Science and Engineering. Available

 at:

https://pdfs.semanticscholar.org/1a79/79822

6c044f50f9b7e802940 67ac3397a28c.pdf

(Accessed: 17 August 2018).

[3] Grant J., (2010). Automatic License Plate

Recognition [ONLINE]. Department of

Computer Science and Engineering,

[4] University of Notre Dame. Available at:

https://www3.nd.edu/~jgrant3/cw/alpr.pdf

(Accessed: 23 August 2018).

[5] Girod, B. (2018). Digital Image Processing

[Online]. Stanford. Available at:

[6] https://web.stanford.edu/class/ee368/Handout

https://www.wardsauto.com/news-analysis/world-vehicle-
https://www.wardsauto.com/news-analysis/world-vehicle-
https://www.wardsauto.com/news-analysis/world-vehicle-population-tops-1-billion-units
https://www.wardsauto.com/news-analysis/world-vehicle-population-tops-1-billion-units
https://www3.nd.edu/~jgrant3/cw/alpr.pdf

 Humanities and Natural Sciences Journal Eldharif & Fanoush. February, 2024 www.hnjournal.net

 Page | 261

Automatic License-Plate Recognition Using Optical Character Recognition HNSJ Volume 5. Issue 2

s/Lectures/2019_Win ter/1-Introduction.pdf

(Accessed: 21 August 2018).

[7] Blinn, J.F., (2005). What is a pixel. IEEE

computer graphics and applications, 25(5),

pp.82-87.

[8] Scholarspace. (2019). All About Images

[ONLINE]. Research guides. Available

 at:

https://guides.lib.umich.edu/c.php?g=282942

&p=1885352 (Accessed: 21 August 2018).

[9] Vector Conversions. (2019). Vectorising

[ONLINE]. Raster vs Vector. Available

 at:

https://vectorconversions.com/vectorizing/ra

ster_vs_vector.html (Accessed: 5 September

2018).

[10] HP Development Company. (2018). Tech

takes [ONLINE]. Print Basics: RGB

 VersusCMYK. Available at:

https://store.hp.com/us/en/tech-takes/print-

basics-rgb-vs-cmyk (Accessed: 5 January

2019).

[11] Geeks for Geeks. (2017) Computer

Graphics, The RGB color model [ONLINE].

 Available

 at:https://www.geeksforgeeks.org/comput

er-graphics-the-rgb-color- model/ (Accessed:

5 January 2019)

[12] Santosh Dahal. (2016) What is Image

[ONLINE]. Available at:

https://www.suntos.com.np/computer-vision-

for-robotics/what-is- image.html (Accessed:

3 January 2019).

[13] Sonka, M., Hlavac, V. and Boyle, R., 1993.

Image pre-processing. In Image Processing,

Analysis and Machine Vision (pp. 56-111).

Springer, Boston, MA.

[14] Songke Li, Yixian Chen, 2011, License Plate

Recognition, p. 5-6.

[15] Ramesh, J. (2003). Computer Vision

[ONLINE]. University of Nevada,

 Reno. Available at:

https://www.cse.unr.edu/~bebis/CS791E/Not

es/ConnectedCompon ents.pdf (Accessed: 21

August 2018).

[16] Sinha, U. (2018). AI Shack. [ONLINE].

Labeling Connected Components Available

at: http://aishack.in/tutorials/labelling-

connected-components-example (Accessed:

10 January 2019).

[17] Kamavisdar, P., Saluja, S. and Agrawal, S.,

2013. A survey on image classification

approaches and techniques. International

Journal of Advanced Research in Computer

and Communication Engineering, 2(1),

pp.1005-1009.

[18] Tensorflow. (2017). About TensorFlow

[ONLINE]. Available at:

https://www.tensorflow.org/. (Accessed: 1

February 2019).

[19] Eslam Eldharif (2018). Solving the Problems

of Timetable Using Genetic Algorithm Case

Study: Faculty of Information Technology

Timetable.

https://guides.lib.umich.edu/c.php?g=282942&p=1885352
https://guides.lib.umich.edu/c.php?g=282942&p=1885352
https://vectorconversions.com/vectorizing/raster_vs_vector.html
https://vectorconversions.com/vectorizing/raster_vs_vector.html
https://store.hp.com/us/en/tech-takes/print-basics-rgb-vs-cmyk
https://store.hp.com/us/en/tech-takes/print-basics-rgb-vs-cmyk
https://www.geeksforgeeks.org/computer-graphics-the-rgb-color-model/
https://www.geeksforgeeks.org/computer-graphics-the-rgb-color-model/
https://www.geeksforgeeks.org/computer-graphics-the-rgb-color-model/
https://www.suntos.com.np/computer-vision-for-robotics/what-is-
https://www.suntos.com.np/computer-vision-for-robotics/what-is-
https://www.suntos.com.np/computer-vision-for-robotics/what-is-image.html
http://www.cse.unr.edu/~bebis/CS791E/Notes/ConnectedCompon
http://www.cse.unr.edu/~bebis/CS791E/Notes/ConnectedCompon
http://aishack.in/tutorials/labelling-
http://www.tensorflow.org/

