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Abstract  

We study theoretically a two-mode optomechanical system where two cavity modes are 

coupled to a single mechanical mode. It is shown that the whole system can yield good 

squeezing, which is comparable to that produced by dispersive coupling, the numerical 

results which we obtained showed periodic oscillations with a maximum peaks in one of the 

two quadrature component with a value less than 0.5. We also showed that entanglement 

can be achieved by calculating the variance in quadrature component of the field operators. 

Our results are useful in non- degenerate parametric oscillation. 
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 حركي  نظام ضوئيلويف بصري في ت التشابك  الكمية و الانضغاطية معامل توليد 

 المستخلص  

ميكانيكي    متذبذب رُبط مع    ثنائي النسق   نظام كمي مكون من حقل كهرومغناطيسيل  نظرية  ال  دراسةال هذه  أجُريت 

النسق   الحركةأحادي  وقد حر  أن    .  توضيح  الكتم  و) يلالنظام  الحقل  من  معامل إليقود     المتذبذب(المكون  ي 

ذاك     كمي  انضغاطية حالة  يشابه  في  عليه  الحصول  يتم  التجاويف   للطاقة  المبدد    الاقترانالذي  في  الضوئية 

النتائج التي تم الحصول عليها إلي      البصرية. البياني لأ  قمموقد أشارت  الللرسم     تربيعية حد مركبات المتغيرات 

وذلك بحساب  التباين   الكمي  التشابك    أنه يمكن الحصول علي  . أيضاً أظهرت النتائج0.5بقيمة قصوي أقل من  

بيرة في كالنتائج التي تم الحصول عليها لهذه الدراسة ذات جدوي   .لمؤثرات الحقل  تربيعيةلمركبات المتغيرات ال

 . التفسخ الحديعدم لكترونية مثل معامل التطبيقات الإ

 . معامل عدم التفسخ، التباين،  تربيعيةمعامل الانضغاطية الكمي، التشابك الكمي، المركبة ال: الكلمات المفتاحية
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I. Introduction  

Squeezed states in optomechanical systems have attracted much interest and have been 

applied in quantum metrology and gravitational wave interferometers [1–5]. We are currently 

witnessing the emergence of a new means of production of squeezing, namely by bringing 

light into interaction with an optomechanical cavity, i.e. an optical cavity with one of its 

elements suspended so as to form on a high-quality mechanical resonator [6–8]. The pressure 

of light inside the cavity on that resonator results in optical nonlinearities described by 

equations that lead to the squeezing [9-12]. The promise of this method is the possibility to 

manufacture on-chip sources of squeezed light, enabling compact optical sensors and new 

fundamental tests of physics. In terms of applications, major results are awaited in 

gravitational wave detection. Although squeezed light has already been integrated into some 

of the detectors, it has not yet been used in actual data acquisition runs [13–16]. In some 

applications, squeezing is expected to enhance the sensitivity by up to a factor of ten. 

Hopefully, such a detector will not only be able to prove the existence of gravitational waves 

(GWs), but also provide information about their spatial distribution and temporal dynamics. 

This would result in a fundamentally new method for observing the universe, which has a 

potential to revolutionize the entire field of cavity optomechanics. In squeezed states of light, 

the noise of the electric field at certain phases falls below that of the vacuum state. This 

means that, when we turn on the squeezed light, we see less noise. This apparently 

paradoxical feature is a direct consequence of quantum nature of light and cannot be 

explained within the classical framework [17–20]. The basic idea of squeezing can be 

understood by using optomechanical systems. There are several proposals which have been 

done to generate and realized squeezed states of cavity fields [1–3]. Safavi-Naeini et al. [4] 

fabricated a micromechanical cavity resonator from a silicon microchip and observed the 

fluctuation spectrum at a level (4.5 ± 0.2)below the shot-noise limit despite highly excited 

thermal state of the mechanical resonators (104 phonons). Purdy et al. [5] placed a low-mass 

partially reflective membrane made of silicon nitride in the middle of an optical cavity and 

pushed the squeezing limit to 32 per cent (1.7 dB) by cooling the membrane to about 1 mK. 

More recently, squeezing of the cavity field is receiving considerable attention. For example, 

Squeezing of light using an on-resonance driving laser is achieved in [6]. Additional ways of 

producing optical squeezing in optomechanical systems have also been proposed. One 

example is the generation of quadrature squeezed light using the dissipative nature of the 

mechanical resonator in a single cavity driven by two differently detuned lasers [7]. Another 

is to use a double-cavity optomechanical system to generate two-mode squeezed light [8, 9]. 

In this paper, we propose an approach for the realization of squeezing for a cavity field modes 

coupled to a mechanical resonator by solving the master equation for the Hamiltonian. It is 

shown that the ultimate degree of squeezing can be obtained by numerically calculating the 

variance in Hermitian amplitude operators using the master equation. Furthermore, the effect 

of the coupling between cavity field mode coupled to a mechanical resonator and environment 

decoherence is effectively suppressed and significant squeezing can be achieved for the 

coupled system [21]. 

II. Model and Hamiltonian 

The squeezed state of the electromagnetic field can be generated in many nonlinear optical 

processes and finds a wide range of applications in quantum information processing and 

quantum metrology. In this section we introduce the basic properties of single and two-mode 

squeezed light states. To describe squeezing in a system of a single mechanical mode coupled 

to a driven two cavity modes, we consider the Hamiltonian [10] 
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𝐻 = ∑ ℏ𝜔𝑘

𝑘=1,2

𝑎†
𝑘𝑎𝑘  + ℏ𝜔𝑚𝑏†𝑏 + ∑ ℏ𝑔𝑘,𝑗(𝑎𝑘 + 𝑎†

𝑘)

𝑘,𝑗=1,2

𝑔𝑘(𝑎𝑗 + 𝑎†
𝑗)(𝑏† + 𝑏)

+ ∑ ℏ𝜀𝑘(𝑎†
𝑘𝑒−𝑖𝜔𝑘𝑡) + 𝑎𝑘𝑒𝑖𝜔𝑘𝑡))

𝑘=1,2

   _______      (1) 

where (𝑎𝑘) and (𝑎†
𝑘) are annihilation (creation) operators of the cavity 𝑘, 𝑗, and 𝑏 (𝑏†) is the 

phonon operators describing the oscillation of the mirror. The first two terms of Eq.(1) 

describe the free energy of the two optical fields as well as the mechanical oscillators with 

frequency 𝜔𝑘 and 𝜔𝑚, respectively. The third term is the interaction between the cavity fields 

and the mechanical oscillator, where 𝑔𝑘,𝑗 is the coupling strength resulted from radiation 

pressure, and the forth term represents the interaction between two cavity fields and the two 

external driving lasers with frequencies ωl1 and ωl2. Using this Hamiltonian we will examine 

squeezed states properties of the two optical fields a1 and a2. The state is said to be 

“squeezed” if it’s oscillating variance become smaller than the variance of the vacuum state. 

In order to study the squeezing of the cavity field, we need to evaluate the variances of the 

generalized quadrature dimensionless operators. We introduce the Hermitian amplitude 

operators as 

𝑋̂𝑘=1,2 =
1

√2
(𝑎𝑘 + 𝑎†

𝑘
)   _______      (2) 

𝑌̂𝑘=1,2 =
1

𝑖√2
(𝑎𝑘 − 𝑎†

𝑘
)    _______      (3) 

Where 

[𝑋̂𝑘, 𝑌̂𝑘̀] = 𝑖𝛿𝑘𝑘̀    _______      (4) 

With 

[𝑎̂𝑘, 𝑎𝑘̀] = 𝛿𝑘𝑘 ̀    _______      (5) 

squeezed states are characterized by an uncertainty of a single emotional quadrature which is 

below the zero-point level. The uncertainty relation for 𝑋̂𝑘  and 𝑌̂𝑘̀ is 

Δ𝑋̂𝑘Δ𝑌̂𝑘̀ ≥
1

2
    _______      (6) 

The variance of the quadrature amplitude of the field operators can be obtained from 

〈(Δ𝑋̂𝑘)
2

〉 = 〈𝑋̂𝑘
2

〉 − 〈𝑋̂𝑘〉2   _______      (7) 

and 

〈(Δ𝑌̂𝑘)
2

〉 = 〈𝑌̂𝑘̀

2
〉 − 〈𝑌̂𝑘̀〉2    _______      (8) 

A squeezed state of the field is obtained if the uncertainty in one of the observables satisfies 

the relation 

 〈(Δ𝑋̂𝑘)
2

〉 <  
1

2
       _______      (9) 

or 

〈(Δ𝑌̂𝑘)
2

〉 <  
1

2
      _______      (10) 
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The state is called an ideal squeezed state if in addition to the last two equations the relation 

Δ𝑋̂1Δ𝑌̂1 =
1

2
     _______      (11) 

or 

Δ𝑋̂2Δ𝑌̂2 =
1

2
     _______      (12) 

is also hold [11].  

The dynamics of the system satisfies the master equation 

𝜌̇ =  −
𝑖

ℏ
[𝐻̂, 𝜌]

+ ∑ 𝜅𝑗(2𝑎𝑗𝜌𝑎†
𝑗 − 𝑎†

𝑗𝑎𝑗𝜌 − 𝜌𝑎†
𝑗𝑎𝑗) + 𝛾(𝑛𝑏 + 1)

𝑗=1,2

(2𝑏𝜌𝑏† − 𝑏†𝑏𝜌 − 𝜌𝑏†𝑏)

+ 𝛾 𝑛𝑏(2𝑏†𝜌𝑏 − 𝑏𝑏†𝜌 − 𝜌𝑏𝑏†)      _______      (13)  

This equation can be numerically solved to calculate the variance for the position and phase 

component for the cavity fields. In the following section we will show single and two mode 

squeezing for the quadrature amplitudes components. 

i) Single mode quadrature squeezed state 

According to the Heisenberg uncertainty relation, the product of the uncertainties in 

determining the expectation values of two quadrature operators should be greater than or 

equal to their commutation value. In other words, if the variance in one of the quadrature 

amplitudes is smaller than the variance of the vacuum, a squeezed state of the cavity field will 

be obtained. In Fig. 5.1, and Fig. 5.2, we plot the fluctuation associated with the single mode 

and two mode component as a function of time where initially the system is in vacuum state. 

From Fig. 5.1a, it is obviously that the variance in one of the field quadrature amplitude, in 

this case the blue line, which is correspond to 〈(Δ𝑋̂𝑘)
2

〉, is less than 0.5. This condition shows 

that the field operators are squeezed. In Fig. 5.1b, we plot the quadrature amplitudes for short 

period of time to show their fluctuation in more resolution. The results show that if any of the 

two quadrature field variance is greater than 0.5, the other must be less than 0.5. Therefore, 

we can safely say that, the variance of one quadrature operators can decrease while the other 

one simultaneously increase in order to satisfy the uncertainty principle. 

Fig:  

5.1 Plot of the time evolution of variance in the cavity quadrature position and momentum 
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operators 𝑋̂𝑗  𝑌𝑗̂  where 𝑗 = 1,2 The figure shows single mode squeezing of the cavity 

fields 𝑎̂𝑗, the blue line is for the variance 〈(∆ 𝑋̂𝑗)
2

〉 , and the black line represents the the 

variance 〈(∆ 𝑌̂𝑗)
2

〉. The parameters are, ω1 = ω2 = 2.5π ×108, ∆1 = ∆2 = 2.5π ×105, Q = 6700, 

κ1 = κ2 = 2π ×103,g = 4π ×106,ε1 = ε2 = 0.05g, ωm = 4π×107. 

ii) Two-mode quadrature squeezed state 

Multimode squeezed states are important since several devices produce light which is 

correlated at the two frequencies ω+ and ω−. Usually these frequencies are symmetrically 

placed either side of a carrier frequency. The emphasis of this subsection is placed on two 

mode squeezing found in the fields for linear combinations of the creation and annihilation 

operators. To show the squeezing for the two modes, we introduce the operators 

𝑄̂ =
1

2
(𝑋̂1 + 𝑋̂2) =  

1

2√2
(𝑎1 + 𝑎2 + 𝑎†

1 + 𝑎†
2)     _______      (14),  

and 

𝑃̂ =
1

2
(𝑌̂1 + 𝑌̂2) =  

1

2𝑖√2
(𝑎1 + 𝑎2 − 𝑎†

1 − 𝑎†
2)  _______      (15), 

with the commutation relation 

[ 𝑄̂, 𝑝̂] =
𝑖

2
   _______      (16) 

To determine whether the dynamics of the two mode quadrature operators produces squeezed 

state, we define the variance  

〈(ΔÔ)
2

〉 = 〈𝑂̂2〉 − 〈𝑂̂〉2   _______      (17) 

Where (𝑂̂ = 𝑄̂ 𝑜𝑟 𝑃̂). In this case the squeezing is achieved if the variance for the position or 

phase amplitude for the cavity fields is less than 0.25, this can be expressed according to the 

formulas 

〈(ΔQ̂)
2

〉 <  
1

4
    _______      (18) 

 or 

〈(ΔP̂)
2

〉 <  
1

4
  _______      (19)  

where the product of their standard deviations, ΔQ and ΔP̂, satisfies the Heisenberg inequality 

ΔQ. ΔP̂ ≥
1

4
  _______      (20) 



                           Humanities and Natural Sciences Journal   Taha et al. May, 2023    www.hnjournal.net 

 

 Page | 414                                               

                                                                                                                                                                    HNSJ   Volume 4. Issue 5                                  

 

Fig 5.2, Plot of the time evolution of variance in the cavity quadrature position and 

momentum operators Q̂ and  P̂. The figure shows two modes squeezing of the cavity fields 

 𝑎̂𝑘,(k = 1,2), the green line is for the variance 〈(ΔQ̂)
2

〉, while the red line represents the 

variance 〈(ΔP̂)
2

〉. The parameters are the same as in Fig. 5.1. 

The plot of Fig. 5.2(a) displays of the variance of the quadrature operators Q̂ and P̂ versus the 

normalized interaction time gt. The figure shows that one of the field quadrature operator’s 

variance amplitude, in this case the green line, which is correspond to〈(ΔQ̂)
2

〉,  is less than 

0.25 as it appear in the figure. This condition shows that the field operators are squeezed. In 
Fig. 5.2(b) we plot the quadrature variances for short period of time to show their fluctuations 
in more resolution. The results show that if any of the two quadrature field variance is greater 
than 0.25, the other must be less than 0.25 in order to satisfy the condition of achieving 
squeezed state. From Fig. 5.1 and Fig. 5.2, we can see that one of the quadrature operator’s 
variance, for any period of the oscillations, must be less than 0.5 for single mode squeezing 
and smaller that 0.25 to obtain two mode squeezing. Additionally, we find that the initial state 
of the field has strong effect on the properties of squeezing. 

III. Entanglement of the two modes of the cavity 

The generation of continuous variable quantum entanglement is of great importance because 
it plays an essential role in quantum information theory. In this section we employ the 
entanglement criteria proposed by Duan [12]to quantify the entanglement between the two 
optical modes of the Hamiltonian (5.1). This criterion based on the total variance of the field 
quadrature operators and it provides a sufficient condition for entanglement of any two-party 
continuous variable states. For inseparable states in our case, the total variance of the 
operators ˆ u and ˆ v is required to be less than or two. The inseparability criterion can be 
written as 

〈(Δû)2〉 + 〈(Δv̂)2〉  < 2     _______      (21) 

Where û = (𝑋̂1 + 𝑋̂2)   and    v̂ = (𝑌̂1 − 𝑌̂2)  the plot of Fig. 5.3 displays of the properties of 

total variance of the quadrature operators û and  v̂ as a function of time. We numerically 

calculate the total variance of the operators û and v̂ and the time evolution shows that the total 

variance reduces to a value which is less than 2 for maximally entangled continuous variable 
state,  and this agrees with the inequality (21), the value below 2 signifies the occurrence of 
continuous variable entanglement. Moreover, such entanglement occurs in regimes accessible 
to optical-fiber experiments. 

Fig 5.2 (a) Fig 5.2 (b) 
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Fig  5.3 Plot of the time evolution of the total variance in the cavity quadrature position and 

momentum operators  𝑢̂ and 𝑣, for quantum entanglement. The parameters are the same as in 

Fig. 5.1 except g= 4π×105. 

IV. Conclusion 

In this paper we investigate the current states of progress in research which are squeezed and 

entangled states in two mode cavity with a single mode mechanical oscillator. We have 

shown that squeezed state can be generated in the coupled opto-mechanical system by 

calculating the variances in quadrature component of the field annihilation and creation 

operators. We obtain a numerical results for the variance versus time, the oscillations in the 

variance show periodic peaks with a maximum peak in one of the two quadrature component, 

(∆Xj)2 in our case, is less than 0.5 for single mode, and (∆Q)2 less than 0.25 for the two mode 

components. These oscillating variances show that the cavity fields are squeezed. To show the 

behavior of the curve in more resolution, we plot the variance for short time. The results show 

that the value of one of the two quadrature component is always below the fluctuation of the 

vacuum state, which means that the condition for achieving squeezed state is satisfied. We 

also note that with the time evolution of the fluctuations in the component depend on the 

initial state of the field. In addition, continuous variable entanglement between the two optical 

modes by employing Duan criteria based on the calculation of the total variance of a pair of 

operators is investigated. the results show that the total variance in the quadrature operators is 

less than 2, which is the condition of achieving entanglement. These results of entangled and 

squeezed states will be useful for the analysis of non-degenerate parametric oscillation [22]. 
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