Humanities & Na Sciences Journal ISSN: (e) 2709-08

Humanities & Natural ISSN: (e) 2709-0833 www.hnjournal.net

RESEARCH TITLE

A PERTURBATION THEORY FOR THE SEMIGROUP OF **OPERATORS ON HILBERT SPACES OF SEQUENCES**

Zuheir Khidir Ahmed Abdelgader¹, Nariman Khider Ahmed Abdalgadir², Entisar Bakhit Bashir Elshikh³, Abualez Alamin Ahmed Ali⁴

¹ Gezira University, Faculty of Education, Department of Mathematics, Email: noonzuheir1976@gmail.com

² Holy Quran University, Faculty of Education, Department of Mathematics, Sudan, Email: narimankhider22@gmail.com

³ Gezira University, Faculty of Education, Department of Mathematics, Email: entisarbakhit@gmail.com

⁴ Holy Quran University, Faculty of Education, Department of Mathematics, Sudan, Email: mr.ezo877@gmail.com HNSJ, 2022, 3(12); https://doi.org/10.53796/hnsj31241

Published at 01/12/2022

Accepted at 20/11/2022

Abstract

In this paper we fixate a perturbation result for C_0 -semigroups on Hilbert spaces and use it to exhibit that certain sequence of operators of the form $A_i u^j = i(u^j)^{(2k)} + V \cdot (u^j)^l$ on $L^2(\mathbb{R})$ generates a semigroup that is strongly continuous on $(0,\infty)$. Applications of C_0 semigroup perturbation theory are crucial for solving differential equations.

Key Words: C₀- Semigroup, A perturbation Theory, Sequence Operators, Hilbert Spaces

1. Introduction

A minimal condition in several of the known perturbation theorems is the relative boundedness of the perturbation of sequence B_j in terms of the given semigroup sequence of generators A_j . These relative boundedness requirements are typically described as

$$\left\|\sum_{j} B_{j} (\lambda_{j} - A_{j})^{-1}\right\| \le M < 1 \tag{1}$$

or

$$\left\|\sum_{j} (\lambda_{j} - A_{j})^{-1} B_{j} x^{j}\right\| \leq M \left\|\sum_{j} x^{j}\right\|$$
(2)

on a certain subset of the complex plane. E.g., in the proof of the well-known result for bounded perturbations (see e.g. [5, Chapter III, Theorem 1.3], [7, Chapter 3, Theorem 1.1]) condition (1) is one of the main ideas. The Miyadera-Voigt, respectively Desch-Schappacher, perturbation theorem uses (1), respectively (2) (see [5, Chapter III, Section 3]). If A_j sequence of generates a bounded analytic semigroup, therefore condition (1), satisfied for every λ_j in the right half plane, is sufficient to exhibit that $A_j + B_j$ again the sequence of generates an analytic semigroup. Obviously, this cannot be true for general C_0 -semigroups. But in this article we want to explore what can be said about $A_j + B_j$ if we only suppose the relative boundedness conditions (1) and (2) on a half plane. If the underlying space is a Hilbert space, we can exhibit that $\left(A_j + B_j, D(A_j)\right)$ the sequence of generates a semigroup that is strongly continuous on $(0, \infty)$.

This article is organized as follows. In the second section we collect some facts about semigroups that are strongly continuous on $(0, \infty)$. Section 3 contains the main results which are showed in Sections 4 and 5. In Section 6 we apply the theorem to certain differential operators.

2. Semigroups that are strongly continuous on $(0, \infty)$

Let *X* be a Banach space. By $\mathcal{L}(X)$ we denote the Banach space of each bounded linear sequence of operators from *X* to *X*. If $T^j: (0, \infty) \to \mathcal{L}(X)$ is a strongly continuous mapping (i.e., $(1 + \varepsilon) \to T^j(1 + \varepsilon)x^j$ is continuous on $(0, \infty)$ for each $x^j \in X$) that satisfies the semigroup property $T^j(1 + \varepsilon)T^j(1 + \varepsilon) = T^j(2 + 2\varepsilon)$ for all $\varepsilon > -1$, therefore we say that the families $(T^{j}(1 + \varepsilon))_{\varepsilon > -1}$ is a semigroup that is strongly continuous on $(0, \infty)$. Examples for such semigroups can be found in [3], [6, Section I.8] and [5, Chapter I, 5.9 (7)].

In this article we want to use Laplace transform methods. Therefore we will suppose from now on that the mapping T^{j} is locally integrable on $(0,\infty)$ (i.e., $T^{j} \in L^{1}\left(\left(0,(1+\varepsilon)\right);\mathcal{L}(X)\right)$ for every $\varepsilon > -1$) and $\left\|\sum_{j}\int_{0}^{(1+\varepsilon)}T^{j}(1+\varepsilon)d(1+\varepsilon)\right\| \leq M\sum_{j}e^{\omega^{j}(1+\varepsilon)}$ $\varepsilon > -1$, (3)

for some constants *M* and ω^j . Therefore, due to [2, Proposition 1.4.5], we can define the Laplace transform for $\lambda_j > \omega^j$. Using integration by parts and the semigroup property, we find that $(R(\lambda_j))_{\lambda_j > \omega^j}$ satisfies the resolvent equation $R(\lambda_j) - R(\mu_j) =$ $(\mu_j - \lambda_j)R(\lambda_j)R(\mu_j)$. Therefore the following definition makes sense.

Definition 2.1. Let $(T^{j}(1 + \varepsilon))_{\varepsilon > -1}$ be a semigroup on a Banach space *X* that is strongly continuous and locally integrable on $(0, \infty)$ and satisfies the norm estimate (3). If there exists a linear sequence of operators $(A_j, D(A_j))$ in *X*, where $D(A_j) \subseteq X$ is the domain of A_j , such that (ω^j, ∞) is contained in the resolvent set $\rho(A_j)$ of A_j and $\sum_j R(\lambda_j, A_j) := \sum_j (\lambda_j I - A_j)^{-1} = \int_0^\infty \sum_j e^{\lambda_j (1+\varepsilon)} T^j (1+\varepsilon) d(1+\varepsilon), \ \lambda_j > \omega^j,$ therefore $(A_j, D(A_j))$ are called the sequence of generators of $(T^j(1+\varepsilon))_{\varepsilon > -1}$.

Using this definition, one can exhibit easily the following properties of the semigroup $(T^{j}(1 + \varepsilon))_{\varepsilon > -1}$ and its sequence of generator A_{j} :

(a) if $x^{j} \in D(A_{j})$, therefore $T^{j}(1 + \varepsilon)x^{j} \in D(A_{j})$ and $A_{j}T^{j}(1 + \varepsilon)x^{j} = T^{j}(1 + \varepsilon)A_{j}x^{j}$ for every $\varepsilon > -1$,

(b) if $x^j \in D(A_i)$ and $\varepsilon > -1$, therefore

$$\sum_{j} x^{j} = \sum_{j} T^{j} (1+\varepsilon) x^{j} - \int_{0}^{(1+\varepsilon)} \sum_{j} T^{j} (1+\varepsilon) A_{j} x^{j} d(1+\varepsilon).$$

The properties (a) and (b) imply that for $x^j \in D(A_j)$ the function u_x^j , defined by

 $u_x^j(1+\varepsilon) = T^j(1+\varepsilon)x^j$ ($\varepsilon > -1$) and $u_x^j(0) = x^j$, is a solution of the abstract Cauchy problem

$$\begin{cases} \left(u^{j}\right)' = A_{j}u^{j}(1+\varepsilon), \ \varepsilon > -1, \\ u^{j}(0) = x^{j}. \end{cases}$$

$$\tag{4}$$

Here, by a solution of (4) we mean a function $u^j \in C([0,\infty);X) \cap C^1((0,\infty);X)$ such that $u^j(1+\varepsilon) \in D(A_j)$ and $(u^j)'(1+\varepsilon) = A_j u^j(1+\varepsilon)$ for every $\varepsilon > -1$ and $u^j(0) = x^j$

3. Main result

The main result is the following perturbation theorem for C_0 -semigroups on Hilbert spaces.

Theorem 3.1. Let $(A_j, D(A_j))$ be the sequence of generators of a C_0 semigroup $(T^j(1 + \varepsilon))_{\varepsilon \ge -1}$ on a Hilbert space X and let $(B_j, D(B_j))$ be a closed
sequence of operators in X such that $D(B_j) \supseteq D(A_j)$. We suppose that there exist
constants $0 \le M < 1$ and $(\lambda_j)_0 \in \mathbb{R}$ such that the set $\{\lambda_j \in \mathbb{C} : Re\lambda_j \ge (\lambda_j)_0\}$ is
contained in the resolvent set of A_j and the estimates

$$\left\|\sum_{j} B_{j} R(\lambda_{j}, A_{j}) x^{j}\right\| \leq M \left\|\sum_{j} x^{j}\right\|$$
(5)

and

$$\left\|\sum_{j} R(\lambda_{j}, A_{j}) B_{j} y^{j}\right\| \leq M \left\|\sum_{j} y^{j}\right\|$$
(6)

are satisfied for all $\lambda_j \in \mathbb{C}$ with $\operatorname{Re} \lambda_j \ge (\lambda_j)_0$ and all $x^j \in X$, $y^j \in D(B_j)$. Therefore $(A_j + B_j, D(A_j))$ the sequence of generates a semigroup $(S(1 + \varepsilon))_{\varepsilon \ge -1}$ that are strongly continuous on $(0,\infty)$.

Example 3.2. Suppose $X = L^2(0, \infty)$. Define linear sequences of operators $(A_j, D(A_j))$ and $(B_j, D(B_j))$ by $(A_j f_j)(x^j) := (f_j)'(x^j)$ and $(B_j f_j)(x^j) := \frac{1}{3x^j} f_j(x^j)$ with maximal domains. Using Hardy's Inequality, we can exhibit that $\|\sum_j R(\lambda_j, A_j) B_j x^j\|_2 \le \frac{2}{3} \|\sum_j x^j\|_2$ for all $Re \lambda_j > 0$, i.e. condition (6) is satisfied. The "candidate" for the perturbed semigroup is $S(1 + \varepsilon) f_j(x^j) := (x^j)^{-1/3} (x^j + (1 + \varepsilon))^{1/3} f_j(x^j + (1 + \varepsilon))$. But $S(1 + \varepsilon)$ is not a bounded sequence of operators on X.

To fixate Theorem 3.1 we shall use the following result about the sequence of generators for semigroups that are strongly continuous on $(0, \infty)$.

Theorem 3.3. Let $(A_j, D(A_j))$ be a closed, densely defined the sequence of operators on a Hilbert space X such that the resolvent $R(\lambda_j, A_j)$ exists and is uniformly bounded on $\{\lambda_j \in \mathbb{C} : Re\lambda_j \ge 0\}$. Further, we suppose that there exists a constant $C \ge 0$ such that

$$\left(\int_{-\infty}^{\infty} \left\|\sum_{j} R\left(i(1+\varepsilon), A_{j}\right) x^{j}\right\|^{2} d(1+\varepsilon)\right)^{1/2} \leq C \left\|\sum_{j} x^{j}\right\|$$
(7)

and

$$\left(\int_{-\infty}^{\infty} \left\|\sum_{j} R\left(i(1+\varepsilon), \left(A_{j}\right)^{*}\right) x^{j}\right\|^{2} d(1+\varepsilon)\right)^{1/2} \leq C \left\|\sum_{j} x^{j}\right\|$$
(8)

For every $x^j \in X$. Therefore $(A_j, D(A_j))$ the sequence of generates a semigroup $(T^j(1 + \varepsilon))_{\varepsilon \ge -1}$ that is strongly continuous on $(0, \infty)$.

Example 3.4. We regard the space $X = L^2(\mathbb{R}) \times L^2(\mathbb{R})$ which is a Hilbert space if we choose the norm $\|\sum_j (u^j, v^j)\|_X := (\|\sum_j u^j\|_2^2 + \|\sum_j v^j\|_2^2)^{1/2}$. For $k \in \mathbb{N}$ and $0 \le (\varepsilon + \beta) < 4k$ we define the function $(1 + \varepsilon) : \mathbb{R} \to \mathbb{R}^2$ by

$$(1+\varepsilon)x^{j} = \begin{pmatrix} -1 - (x^{j})^{2k} & (x^{j})^{(\varepsilon+\beta)} \\ 0 & -1 - (x^{j})^{2k} \end{pmatrix}$$
(9)

Therefore the multiplication sequence of operators, given by

$$A_{j}(u^{j}, v^{j}) = (1 + \varepsilon) \begin{pmatrix} u^{j} \\ v^{j} \end{pmatrix} , D(A_{j}) = \{(u^{j}, v^{j}) \in X : A_{j}(u^{j}, v^{j}) \in X\},$$
(10)

satisfies the conditions of Theorem 3.3, Therefore A_j the sequence of generates a semigroup that are strongly continuous on $(0, \infty)$. But if $k < \frac{(\varepsilon + \beta)}{2} < 2k$, therefore A_j is not strongly continuous at 0.

Note

We can deduce that:

$$(i) \left(\int_{-\infty}^{\infty} \left\|\sum_{j} R\left(i(1+\varepsilon), A_{j}\right) x^{j}\right\|^{2} d(1+\varepsilon)\right)^{1/2} \leq \left(\int_{-\infty}^{\infty} \left\|\sum_{j} R\left(i(1+\varepsilon), \left(A_{j}\right)^{*}\right) x^{j}\right\|^{2} d(1+\varepsilon)\right)^{1/2}$$
$$(ii) \left(\int_{-\infty}^{\infty} \left\|\sum_{j} R\left(i(1+\varepsilon), A_{j}\right) x^{j}\right\|^{2} d(1+\varepsilon)\right)^{1/2} \leq \frac{c}{M} \left\|\sum_{j} B_{j} R(\lambda_{j}, A_{j}) x^{j}\right\|$$

(iii)
$$\left(\int_{-\infty}^{\infty} \left\|\sum_{j} R(i(1+\varepsilon), (A_j)^*) x^j\right\|^2 d(1+\varepsilon)\right)^{1/2} \leq \frac{c}{M} \left\|\sum_{j} B_j R(\lambda_j, A_j) x^j\right\|$$

Proof

- (i) From (7) and (8).
- (ii) From (5) and (7).
- (iii) From (5) and (8).

4. Proof of Theorem 3.3

We give a proof of Theorem 3.3. We first state two technical lemmas.

Lemma 4.1. Let $(A_j, D(A_j))$ be a closed sequence of operators in a Banach space *X* with

 $0 \in \rho(A_j)$. If we can find a subset *G* of $\rho(A_j)$ and a constant $M \ge 0$ such that $\|\sum_i R(\lambda_i, A_j)\| \le M$ on *G*, then there is a constant $c \ge 0$ such that

$$\begin{aligned} \left\|\sum_{j} R(\lambda_{j}, A_{j}) x^{j}\right\| &\leq \frac{c}{1 + \left\|\sum_{j} \lambda_{j}\right\|} \left\|\sum_{j} A_{j} x^{j}\right\| \qquad \text{and} \qquad \left\|\sum_{j} R(\lambda_{j}, A_{j})^{2} y^{j}\right\| &\leq \\ \frac{c}{1 + \left\|\sum_{j} \lambda_{j}\right\|^{2}} \left\|\sum_{j} (A_{j})^{2} y^{j}\right\| &\\ \text{and} \qquad \left\|\sum_{j} R(\lambda_{j}, A_{j})^{2} y^{j}\right\| &\leq \\ \frac{c}{1 + \left\|\sum_{j} \lambda_{j}\right\|^{2}} \left\|\sum_{j} (A_{j})^{2} y^{j}\right\| &\leq \\ \frac{c}{1 + \left\|\sum_{j} \lambda_{j}\right\|^{2}} \left\|\sum_{j} (A_{j})^{2} y^{j}\right\| &\\ \text{and} \qquad \left\|\sum_{j} R(\lambda_{j}, A_{j})^{2} y^{j}\right\| &\leq \\ \frac{c}{1 + \left\|\sum_{j} \lambda_{j}\right\|^{2}} \left\|\sum_{j} (A_{j})^{2} y^{j}\right\| &\\ \frac{c}{1 + \left\|\sum_{j} \lambda_{j}\right\|^{2}} \left\|\sum_{j} (A_{j})^{2} y^{j}\right\|^{2}} \left\|\sum_{j} (A_{j})^{2} y^{j}\right\|^{2} \right\| &\\ \frac{c}{1 + \left\|\sum_{j} \lambda_{j}\right\|^{2}} \left\|\sum_{j} (A_{j})^{2} y^{j}\right\|^{2} \left\|\sum_{j} (A_{j})^{2} y^{j}\right\|^{2} \right\|^{2} \\ \frac{c}{1 + \left\|\sum_{j} \lambda_{j}\right\|^{2}} \left\|\sum_{j} (A_{j})^{2} y^{j}\right\|^{2} \right\|^{2} \\ \frac{c}{1 + \left\|\sum_{j} \lambda_{j}\right\|^{2}} \left\|\sum_{j} (A_{j})^{2} y^{j}\right\|^{2} \\ \frac{c}{1 + \left\|\sum_{j} \lambda_{j}\right\|^{2} } \left\|\sum_{j} (A_{j})^{2} y^{j}\right\|^{2} \\ \frac{c}{1 + \left\|\sum_{j} \lambda_{j}\right\|^{2} } \left\|\sum_{j} (A_{j})^{2} y^{j}\right\|^{2} \\ \frac{c}{1 + \left\|\sum_{j} \lambda_{j}\right\|^{2} } \left\|\sum_{j} (A_{j})^{2} y^{j}\right\|^{2} \\ \frac{c}{1 + \left\|\sum_{j} \lambda_{j}\right\|^{2} } \left\|\sum_{j} (A_{j})^{2} y^{j}\right\|^{2} \\ \frac{c}{1 + \left\|\sum_{j} \lambda_{j}\right\|^{2} } \left\|\sum_{j} (A_{j})^{2} y^{j}\right\|^{2} \\ \frac{c}{1 + \left\|\sum_{j} \lambda_{j}\right\|^{2} } \left\|\sum_{j} (A_{j})^{2} y^{j}\right\|^{2} \\ \frac{c}{1 + \left\|\sum_{j} \lambda_{j}\right\|^{2} } \left\|\sum_{j} (A_{j})^{2} y^{j}\right\|^{2} \\ \frac{c}{1 + \left\|\sum_{j} \lambda_{j}\right\|^{2} } \left\|\sum_{j} (A_{j})^{2} y^{j}\right\|^{2} \\ \frac{c}{1 + \left\|\sum_{j} \lambda_{j}\right\|^{2} } \left\|\sum_{j} (A_{j})^{2} y^{j}\right\|^{2} \\ \frac{c}{1 + \left\|\sum_{j} \lambda_{j}\right\|^{2} } \left\|\sum_{j} (A_{j})^{2} y^{j}\right\|^{2} \\ \frac{c}{1 + \left\|\sum_{j} \lambda_{j}\right\|^{2} } \left\|\sum_{j} (A_{j})^{2} y^{j}\right\|^{2} \\ \frac{c}{1 + \left\|\sum_{j} (A$$

for all $\lambda_j \in G$ and all $x^j \in D(A_j)$, $y^j \in D(A_j)^2$.

Proof. For $\lambda_j \in G \setminus \{0\}$ and $x^j \in D(A_j)$ the resolvent $R(\lambda_j, A_j) x^j$ can be written as $R(\lambda_j, A_j) x^j = \frac{1}{\lambda_j} (x^j + R(\lambda_j, A_j) A_j x^j)$. If $y^j \in D(A_j)^2$ we obtain $R(\lambda_j, A_j)^2 y^j = \frac{1}{(\lambda_j)^2} (y^j + 2R(\lambda_j, A_j) A_j y^j + R(\lambda_j, A_j)^2 (A_j)^2 y^j)$. Since 0 is in the resolvent set of A_j

and the resolvent are uniformly bounded on G, the lemma is proved.

Lemma 4.2. Let $(A_j, D(A_j))$ be a closed sequence of operators in a Banach space X such that $\{\lambda_j \in \mathbb{C} : Re\lambda_j \ge 0\} \subseteq \rho(A_j)$ and $\|\sum_j R(\lambda_j, A_j)\| \le M$ for all $\lambda_j \in \mathbb{C}$ with $Re \lambda_j \ge 0$. For $x^j \in X$, $\varepsilon \ge -1$ we define

$$U(1+\varepsilon)\sum_{j} x^{j} := \frac{1}{2\pi i(1+\varepsilon)} \int_{(1+\varepsilon)-i\infty}^{(1+\varepsilon)+i\infty} \sum_{j} e^{\mu_{j}(1+\varepsilon)} R(\mu_{j}, A_{j})^{2} x^{j} d\mu_{j}$$
(11)

Therefore,

(a) if $x^j \in D(A_j)^2$, the integral in (11) are certainly convergent and does not depend on $\varepsilon \ge -1$,

(b) for every $x^j \in D(A_j)^2$ and all $\varepsilon > -1$, the limit

$$\lim_{\varepsilon \to \infty} \frac{1}{2\pi i} \int_{(1+\varepsilon)-i(1+\varepsilon)}^{(1+\varepsilon)+i(1+\varepsilon)} \sum_{j} e^{\mu_{j}(1+\varepsilon)} R(\mu_{j}, A_{j}) x^{j} d\mu_{j}$$
(12)

exists and are equals to $U(1 + \varepsilon)x^j$,

(c) for $x^j \in D(A_j)^2$ and $Re\lambda_j > 0$, we have that

$$\sum_{j} R(\lambda_{j}, A_{j}) x^{j} = \sum_{j} \frac{x^{j}}{\lambda_{j}} + \int_{0}^{\infty} \sum_{j} e^{\lambda_{j}(1+\varepsilon)} \left(U(1+\varepsilon) x^{j} - x^{j} \right) d(1+\varepsilon), \quad (13)$$

(d) the semigroup property

$$U(1+\varepsilon)U(1+\varepsilon)x^{j} = U(2+2\varepsilon)x^{j}$$

holds for all $\varepsilon > -1$ and every $x^j \in D(A_j)^4$.

Proof. Let $x^j \in D(A_j)^2$ and $\varepsilon > -1$.

(a) Lemma 4.1 implies that the integral in (11) converges absolutely. The independence of $\varepsilon \ge -1$ is a consequence of Cauchy's Theorem.

(b) Integration by parts yields that for $\varepsilon > -1$

$$\int_{(1+\varepsilon)-i(1+\varepsilon)} \sum_{j} e^{\mu_{j}(1+\varepsilon)} R(\mu_{j}, A_{j}) x^{j} d\mu_{j}$$

$$= \frac{1}{(1+\varepsilon)} \sum_{j} \left(e^{(1+\varepsilon)+i(1+\varepsilon)^{2}} R\left(\begin{pmatrix} (1+\varepsilon)+\\i(1+\varepsilon), A_{j} \end{pmatrix} x^{j} \right) - e^{(1+\varepsilon)-i(1+\varepsilon)^{2}} R\left((1+\varepsilon)-i(1+\varepsilon), A_{j} \right) x^{j} \right) + \frac{1}{(1+\varepsilon)} \int_{(1+\varepsilon)-i(1+\varepsilon)} \sum_{j} e^{\mu_{j}(1+\varepsilon)} R(\mu^{j}, A_{j})^{2} x^{j} d\mu_{j}.$$

By Lemma 4.1, $\left\|\sum_{j} R(i(1 + \varepsilon), A_j) x^j\right\|$ converges to 0 if $\|1 + \varepsilon\| \to \infty$. Therefore we have that the limit 12 exists and are equals to $U(1 + \varepsilon) x^j$.

(c) Let $Re\lambda_j > 0$. If $x^j \in D(A_j)$, $\varepsilon > -1$ and $0 < (1 + \varepsilon) < Re\lambda_j$, we find

$$\sum_{j} \left(U(1+\varepsilon)x^{j} - x^{j} \right) = \frac{1}{2\pi i} \int_{(1+\varepsilon)-i\infty}^{(1+\varepsilon)+i\infty} \sum_{j} e^{\mu_{j}(1+\varepsilon)} \left(R(\mu_{j}, A_{j})x^{j} - \frac{x^{j}}{\mu_{j}} \right) d\mu_{j}$$
$$= \frac{1}{2\pi i} \int_{(1+\varepsilon)-i\infty}^{(1+\varepsilon)+i\infty} \sum_{j} e^{\mu_{j}(1+\varepsilon)} \left(R(\mu_{j}, A_{j})A_{j}x^{j} \right) \frac{d\mu_{j}}{\mu_{j}}$$

For $x^j \in D(A_j)^2$, Lemma 4.1 yields

 $\left\|\sum_{j} \left(R\left(\mu_{j}, A_{j}\right) A_{j} x^{j}\right)\right\| \leq \frac{c}{1+|\sum_{j} \mu_{j}|} \left\|\sum_{j} \left(A_{j}\right)^{2} x^{j}\right\|.$ Therefore the above integral is absolutely convergent and $\left\|\sum_{j} U(1+\varepsilon) x^{j} - x^{j}\right\| \leq c' \left\|\sum_{j} \left(A_{j}\right)^{2} x^{j}\right\|$ for every $\varepsilon > \varepsilon$

-1. So we can form the Laplace transform of $U(1 + \varepsilon)x^j - x^j$ and obtain

$$\sum_{j} \left(\lambda_{j} \int_{0}^{\infty} e^{-\lambda_{j}(1+\varepsilon)} \left(U(1+\varepsilon)x^{j} - x^{j} \right) d(1+\varepsilon) \right)$$
$$= \sum_{j} \left(\frac{\lambda_{j}}{2\pi i} \int_{0}^{\infty} e^{-\lambda_{j}(1+\varepsilon)} \int_{(1+\varepsilon)-i\infty}^{(1+\varepsilon)+i\infty} e^{\mu_{j}(1+\varepsilon)} R(\mu_{j}, A_{j}) A_{j} x^{j} \frac{d\mu_{j}}{\mu_{j}} d(1+\varepsilon) \right)$$
$$= \sum_{j} \left(\frac{\lambda_{j}}{2\pi i} \int_{(1+\varepsilon)-i\infty}^{(1+\varepsilon)+i\infty} \int_{0}^{\infty} e^{(\mu_{j}-\lambda_{j})(1+\varepsilon)} d(1+\varepsilon) R(\mu_{j}, A_{j}) A_{j} x^{j} \frac{d\mu_{j}}{\mu_{j}} \right)$$

$$= \sum_{j} \left(\frac{\lambda_{j}}{2\pi i} \int_{(1+\varepsilon)-i\infty}^{(1+\varepsilon)+i\infty} \frac{1}{\lambda_{j}-\mu_{j}} R(\mu_{j},A_{j}) A_{j} x^{j} \frac{d\mu_{j}}{\mu_{j}} \right)$$
$$= \sum_{j} R(\lambda_{j},A_{j}) A_{j} x^{j} = \sum_{j} (\lambda_{j} R(\lambda_{j},A_{j}) x^{j} - x^{j}),$$

using Fubini's and Cauchy's Theorems.

(d) Let $\mu^{j} > \lambda_{j} > 0$. Therefore integration by parts yields

$$\begin{split} \sum_{j} & \left(\frac{R(\lambda_{j}, A_{j}) x^{j} - R(\mu_{j}, A_{j}) x^{j}}{\mu_{j} - \lambda_{j}} \right) \\ &= \int_{0}^{\infty} \sum_{j} \left(e^{(\lambda_{j} - \mu_{j})(1+\varepsilon)} R(\lambda_{j}, A_{j}) x^{j} d(1+\varepsilon) - \frac{x^{j}}{\mu_{j}(\mu_{j} - \lambda_{j})} \right) \\ &\quad - \sum_{j} \left(\frac{1}{\mu^{j} - \lambda_{j}} \int_{0}^{\infty} e^{(\lambda_{j} - \mu_{j})(1+\varepsilon)} e^{(-\lambda_{j})(1+\varepsilon)} \left(U(1+\varepsilon) x^{j} - x^{j} \right) d(1+\varepsilon) \right) \\ &= \left(\int_{0}^{\infty} \sum_{j} e^{(\lambda_{j} - \mu_{j})(1+\varepsilon)} \frac{x^{j}}{\lambda_{j}} d(1+\varepsilon) \\ &\quad + \left(\int_{0}^{\infty} \sum_{j} e^{(\lambda_{j} - \mu_{j})(1+\varepsilon)} d(1+\varepsilon) \right) \left(\int_{0}^{\infty} \sum_{j} e^{-\lambda_{j}(1+\varepsilon)} \left(U(1+\varepsilon) x^{j} - x^{j} \right) d(1+\varepsilon) \right) \right) \end{split}$$

$$\begin{split} - & \left(\sum_{j} \frac{x^{j}}{\mu_{j}(\mu_{j} - \lambda_{j})} \right) \\ & - \left(\int_{0}^{\infty} \sum_{j} e^{(\lambda_{j} - \mu_{j})(1+\varepsilon)} d(1+\varepsilon) \right) \left(\int_{0}^{(1+\varepsilon)} \sum_{j} e^{-\lambda_{j}(1+\varepsilon)} (U(1+\varepsilon)x^{j} - x^{j}) d(1+\varepsilon) \right) \right) \\ & + \varepsilon) \end{pmatrix} \right) \\ & = \sum_{j} \left(\frac{x^{j}}{\lambda_{j}(\mu_{j} - \lambda_{j})} - \frac{x^{j}}{\mu_{j}(\mu_{j} - \lambda_{j})} \right) \\ & + \left(\int_{0}^{\infty} \sum_{j} e^{(\lambda_{j} - \mu_{j})(1+\varepsilon)} d(1+\varepsilon) \right) \left(\int_{(1+\varepsilon)}^{\infty} \sum_{j} e^{-\lambda_{j}(1+\varepsilon)} (U(1+\varepsilon)x^{j} - x^{j}) d(1+\varepsilon) \right) \right) \\ & + \varepsilon) \end{pmatrix} \right) \\ & = \sum_{j} \left(\frac{\mu_{j}x^{j} - \lambda_{j}x^{j}}{\lambda_{j}\mu_{j}(\mu_{j} - \lambda_{j})} \right) \\ & + \left(\int_{0}^{\infty} \sum_{j} e^{-\mu_{j}(1+\varepsilon)} d(1+\varepsilon) \right) \left(\int_{0}^{\infty} \sum_{j} e^{-\lambda_{j}(1+\varepsilon)} (U(1+\varepsilon)x^{j} - x^{j}) d(1+\varepsilon) \right) \right) \\ & = \left(\sum_{j} \frac{x^{j}}{\lambda_{j}\mu_{j}} + \left(\int_{0}^{\infty} \sum_{j} e^{-\mu_{j}(1+\varepsilon)} d(1+\varepsilon) \right) \left(\int_{0}^{\infty} \sum_{j} e^{-\lambda_{j}(1+\varepsilon)} (U(2+2\varepsilon)x^{j} - x^{j}) d(1+\varepsilon) \right) \right) \right) \\ & = \left(\sum_{j} \frac{x^{j}}{\lambda_{j}\mu_{j}} + \left(\int_{0}^{\infty} \sum_{j} e^{-\mu_{j}(1+\varepsilon)} d(1+\varepsilon) \right) \left(\int_{0}^{\infty} \sum_{j} e^{-\lambda_{j}(1+\varepsilon)} (U(2+2\varepsilon)x^{j} - x^{j}) d(1+\varepsilon) \right) \right) \right) \\ & = \sum_{j} \left(\sum_{j} \frac{x^{j}}{\lambda_{j}\mu_{j}} + \left(\int_{0}^{\infty} \sum_{j} e^{-\mu_{j}(1+\varepsilon)} d(1+\varepsilon) \right) \left(\int_{0}^{\infty} \sum_{j} e^{-\lambda_{j}(1+\varepsilon)} (U(2+2\varepsilon)x^{j} - x^{j}) d(1+\varepsilon) \right) \right) \right) \\ & = \sum_{j} \left(\sum_{j} \frac{x^{j}}{\lambda_{j}\mu_{j}} + \left(\sum_{j} \sum_{j} e^{-\mu_{j}(1+\varepsilon)} d(1+\varepsilon) \right) \left(\sum_{j} \sum_{j} e^{-\lambda_{j}(1+\varepsilon)} (U(2+2\varepsilon)x^{j} - x^{j}) d(1+\varepsilon) \right) \right) \right) \\ & = \sum_{j} \left(\sum_{j} \sum_{j} \frac{x^{j}}{\lambda_{j}\mu_{j}} + \sum_{j} \sum_$$

Second hand, if $x^j \in D(A_j)^4$, therefore $U(1 + \varepsilon)x^j \in D(A_j)^2$ and

$$\sum_{j} R(\mu_{j}, A_{j}) R(\lambda_{j}, A_{j}) x^{j}$$

$$= \sum_{j} \left(\frac{R(\lambda_{j}, A_{j}) x^{j}}{\mu_{j}} + \int_{0}^{\infty} \sum_{j} e^{-\mu_{j}(1+\varepsilon)} \left(U(1+\varepsilon) R(\lambda_{j}, A_{j}) x^{j} - R(\lambda_{j}, A_{j}) x^{j} \right) \right) d(1+\varepsilon)$$

$$+ \varepsilon)$$

$$\begin{split} &= \sum_{j} \left(\frac{x^{j}}{\lambda_{j}\mu_{j}} + \frac{1}{\mu_{j}} \int_{0}^{\infty} e^{-\lambda_{j}(1+\varepsilon)} \left(U(1+\varepsilon)x^{j} - x^{j} \right) \right) d(1+\varepsilon) \\ &\quad + \int_{0}^{\infty} \sum_{j} e^{-\mu_{j}(1+\varepsilon)} \left(U(1+\varepsilon)\frac{x^{j}}{\lambda_{j}} - \frac{x^{j}}{\lambda_{j}} \right) d(1+\varepsilon) \\ &\quad + \left(\int_{0}^{\infty} \sum_{j} e^{-\mu_{j}(1+\varepsilon)} d(1+\varepsilon) \right) \left(\int_{0}^{\infty} \sum_{j} e^{-\lambda_{j}(1+\varepsilon)} \left(U(1+\varepsilon) \left(U(1+\varepsilon)x^{j} - x^{j} \right) \right) \right) \\ &\quad - \left(U(1+\varepsilon)x^{j} - x^{j} \right) \right) d(1+\varepsilon) \\ &\sum_{j} \frac{x^{j}}{\lambda_{j}\mu_{j}} + \left(\int_{0}^{\infty} \sum_{j} e^{-\mu_{j}(1+\varepsilon)} d(1+\varepsilon) \right) \left(\int_{0}^{\infty} \sum_{j} e^{-\lambda_{j}(1+\varepsilon)} \left(U(1+\varepsilon) \left(U(1+\varepsilon)x^{j} - x^{j} \right) \right) \right) d(1+\varepsilon) \\ &\quad + \varepsilon) \end{split}$$

By the uniqueness theorem for the Laplace transform we obtain that

$$U(2+2\varepsilon)x^{j} - x^{j} = U(1+\varepsilon)U(1+\varepsilon)x^{j} - x^{j}$$
(14)

for almost all $\varepsilon > -1$ and for all $x^j \in D(A_j)^4$. For fixed $(1 + \varepsilon)$, the functions $(1 + \varepsilon) \mapsto U(2 + 2\varepsilon)x^j$ and $(1 + \varepsilon) \mapsto U(1 + \varepsilon)U(1 + \varepsilon)x^j$ both are continuous. So the equation (14) holds for every $\varepsilon > -1$. By exchanging the roles of $(1 + \varepsilon)$ we obtain

$$U(2+2\varepsilon)x^{j} = U(1+\varepsilon)U(1+\varepsilon)x^{j}$$

for every $\varepsilon > -1$ and all $x^j \in D(A_j)^4$.

Proof of Theorem 3.3. Prove the theorem in four steps. Here, *c* is always an appropriate constant, and by $\langle \cdot, \cdot \rangle$ we denote the inner product on *X*.

Step 1: A_i "candidate" for the semigroup

Apply the inverse Fourier transform to $R(i \cdot, A_j)x^j \in L^2(\mathbb{R}, X)$: Take $\varepsilon > -1$ and $x^j \in X$ and define

$$T^{j}(1+\varepsilon)x^{j} := \frac{1}{2\pi} \int_{-\infty}^{\infty} \sum_{j} e^{i(1+\varepsilon)^{2}} R(i(1+\varepsilon), A_{j})x^{j} d(1+\varepsilon)$$
$$\varepsilon) = \frac{1}{2\pi i} \int_{-i\infty}^{i\infty} \sum_{j} e^{\lambda_{j}(1+\varepsilon)} R(\lambda_{j}, A_{j})x^{j} d\lambda_{j}.$$

Since X is a Hilbert space, Plancherel's theorem yields $T^{j}(\cdot)x^{j} \in L^{2}((0,\infty), X)$ and $\left(\int_{0}^{\infty} \left\|\sum_{j} T^{j}(1+\varepsilon)x^{j}\right\|^{2} d(1+\varepsilon)\right)^{1/2} \leq c \left\|\sum_{j} x^{j}\right\|$ for every $x^{j} \in X$. Clearly, T^{j} are linear in x^j , and from Lemma 4.2 (d) we know that the semigroup property $T^j(1 + \varepsilon)T^j(1 + \varepsilon)x^j = T^j(2 + 2\varepsilon)x^j$ are satisfied whenever $x^j \in D(A_j)^4$. and $\varepsilon > -1$. Step 2: Boundedness of $T^j(1 + \varepsilon)$

First we regard the adjoint sequence of operators $(A_j)^*$. As in step 1 we can exhibit that

 $(T^j)^*(\cdot)x^j$, defined by

$$\sum_{j} (T^{j})^{*} (1+\varepsilon) x^{j} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \sum_{j} e^{i(1+\varepsilon)^{2}} R(i(1+\varepsilon), (A_{j})^{*}) x^{j} d(1+\varepsilon)$$
$$= \frac{1}{2\pi i} \int_{-i\infty}^{i\infty} \sum_{j} e^{\lambda_{j}(1+\varepsilon)} R(\lambda_{j}, (A_{j})^{*}) x^{j} d\lambda_{j}, \varepsilon > -1,$$

are in $L^2((0,\infty), X)$ for every $x^j \in X$ and $\left(\int_0^\infty \left\|\sum_j (T^j)^* (1+\varepsilon) x^j\right\|^2 d(1+\varepsilon)\right)^{1/2} \le c \left\|\sum_j x^j\right\|$. It is easy to see that $\langle y^j, T^j(1+\varepsilon) x^j \rangle = \langle (T^j)^* (1+\varepsilon) y^j, x^j \rangle$ for $x^j, y^j \in X$ and $\varepsilon > -1$.

Now let $\varepsilon > -1$, $x^j \in D(A_j)^4$ and $y^j \in X$. Therefore

$$(1+\varepsilon)\sum_{j} \langle y^{j}, T^{j}(1+\varepsilon)x^{j} \rangle = \int_{0}^{(1+\varepsilon)} \sum_{j} \langle y^{j}, T^{j}(1+\varepsilon)x^{j} \rangle d(1+\varepsilon)$$
$$= \int_{0}^{(1+\varepsilon)} \sum_{j} \langle y^{j}, T^{j}(0)T^{j}(1+\varepsilon)x^{j} \rangle d(1+\varepsilon)$$
$$= \int_{0}^{(1+\varepsilon)} \sum_{j} \langle (T^{j})^{*}(0)y^{j}, T^{j}(1+\varepsilon)x^{j} \rangle d(1+\varepsilon)$$
$$\leq \int_{0}^{(1+\varepsilon)} \left\| \sum_{j} (T^{j})^{*}(0)y^{j} \right\| \left\| \sum_{j} T^{j}(1+\varepsilon)x^{j} \right\| d(1+\varepsilon)$$

and we can estimate

$$\int_{0}^{(1+\varepsilon)} \left\| \sum_{j} (T^{j})^{*}(0)y^{j} \right\| \left\| \sum_{j} T^{j}(1+\varepsilon)x^{j} \right\| d(1+\varepsilon)$$

$$\leq \left(\int_{0}^{(1+\varepsilon)} \left\| \sum_{j} (T^{j})^{*}(0)y^{j} \right\|^{2} d(1+\varepsilon) \right)^{1/2} \left(\int_{0}^{(1+\varepsilon)} \left\| \sum_{j} T^{j}(1+\varepsilon)x^{j} \right\|^{2} d(1+\varepsilon) \right)^{1/2}$$

$$\leq \left(\int_{0}^{\infty} \left\|\sum_{j} (T^{j})^{*} (1+\varepsilon) y^{j}\right\|^{2} d(1+\varepsilon)\right)^{1/2} \left(\int_{0}^{\infty} \left\|\sum_{j} T^{j} (1+\varepsilon) x^{j}\right\|^{2} d(1+\varepsilon)\right)^{1/2}$$
$$\leq c \left\|\sum_{j} x^{j}\right\| \left\|\sum_{j} y^{j}\right\|.$$

This yields $\|\sum_{j} T^{j}(1+\varepsilon)x^{j}\| \leq \frac{c}{1+\varepsilon} \|\sum_{j} x^{j}\|$ for $x^{j} \in D(A_{j})^{4}$. Since $(A_{j}, D(A_{j}))$ are densely defined and injective, $D(A_{j})^{4}$ are dense in *X*. So we have showed that $T(1+\varepsilon) \in \mathcal{L}(X)$. Furthermore, the semigroup property $T^{j}(1+\varepsilon)T^{j}(1+\varepsilon) = T^{j}(2+2\varepsilon)$ are satisfied for every $\varepsilon > -1$.

Step 3: The generator of $(T^{j}(1 + \varepsilon))_{\varepsilon > -1}$

Let $Re\lambda_j > 0$. We want of prove that $\sum_j R(\lambda_j, A_j) = \int_0^\infty \sum_j e^{-\lambda_j(1+\varepsilon)} T^j(1+\varepsilon) d(1+\varepsilon)$.

In Lemma 4.2 (c) we have already proved that $\sum_{j} R(\lambda_{j}, A_{j}) x^{j} = \sum_{j} \frac{x^{j}}{\lambda_{j}} + \int_{0}^{\infty} \sum_{j} e^{-\lambda_{j}(1+\varepsilon)} (U(1+\varepsilon)x^{j} - x^{j}) d(1+\varepsilon) \quad \text{for} \quad \text{every} x^{j} \in D(A_{j})^{2}.$ Since $(\int_{0}^{\infty} ||\sum_{j} T^{j}(1+\varepsilon)x^{j}||^{2} d(1+\varepsilon))^{1/2} \leq c ||\sum_{j} x^{j}|| \text{ and } D(A_{j})^{2} \text{ are dense in } X, \text{ the assertion is proved.}$

Step 4: Strong continuity on $(0, \infty)$

Finally, we exhibit that $(1 + \varepsilon) \mapsto T^j (1 + \varepsilon) x^j$ are continuous on $(0, \infty)$ for every $x^j \in X$.

For
$$x^{j} \in D(A_{j})^{2}$$
, Lemma 4.1 yields that $T^{j}(1 + \varepsilon)x^{j} - x^{j} = \frac{1}{2\pi i} \int_{-i\infty}^{i\infty} \sum_{j} e^{\lambda_{j}(1+\varepsilon)} R(\lambda_{j}, A_{j}) A_{j} x^{j} \frac{d\lambda_{j}}{\lambda_{j}}$

converges absolutely and uniformly on compact intervals. Therefore $(1 + \varepsilon) \mapsto T^j (1 + \varepsilon) x^j$ are continuous on $[0, \infty)$ if $x^j \in D(A_j)^2$. Since $D(A_j)^2$ are dense in X and $(1 + \varepsilon)T^j (1 + \varepsilon)$ are uniformly bounded (Step 2), the mapping $(1 + \varepsilon) \mapsto T^j (1 + \varepsilon) x^j$ are continuous on $(0, \infty)$ for each $x^j \in X$. This proves the theorem.

5. Proof of Theorem 3.1

The following lemma is implicit in the standard presentations of perturbation theory

([5, Chapter III], [7, Chapter 3]).

Lemma 5.1. Let $(A_j, D(A_j))$ and $(B_j, D(B_j))$ be closed sequence of operators on a Banach space *X* where $(A_j) \subseteq D(B_j)$. Assume that A_j and $(A_j)^*$ are densely defined and that the resolvent set of A_j are nonempty. If there exists $0 \le M < 1$ and $\emptyset \ne G \subseteq$ $\rho(A_j)$ such that

$$\left\|\sum_{j} B_{j} R(\lambda_{j}, A_{j}) x^{j}\right\| \leq M \left\|\sum_{j} x^{j}\right\|$$
 for all $x^{j} \in X$ and all $\lambda_{j} \in G$

and

$$\left\|\sum_{j} R(\lambda_{j}, A_{j}) B_{j} x^{j}\right\| \leq M \left\|\sum_{j} x^{j}\right\| \text{ for all } x^{j} \in D(B_{j}) \text{ and all } \lambda_{j} \in G,$$
(15)

therefore the sequence of operators $(A_j + B_j, D(A_j))$ are closed and $G \subseteq \rho(A_j + B_j)$. Moreover we have that

$$R(\lambda_j, A_j + B_j) = \left[I - R(\lambda_j, A_j)B_j\right]^{-1} R(\lambda_j, A_j)$$
(16)

and

$$R(\lambda_j, (A_j + B_j)^*) = \left[I - R(\lambda_j, (A_j)^*)(B_j)^*\right]^{-1} R(\lambda_j, (A_j)^*)$$
(17)

for all $\lambda_i \in G$.

Using this lemma and Theorem 3.3, we can exhibit Theorem 3.1.

Proof of Theorem 3.1. We can suppose that $max \left\{ \omega^{j}(T^{j}), (\lambda_{j})_{0} \right\} < 0$. Else we regard $\left(A_{j} - \omega^{j}, D(A_{j})\right)$ instead of $\left(A_{j}, D(A_{j})\right)$, where $\omega^{j} > max \left\{ \omega^{j}(T^{j}), (\lambda_{j})_{0} \right\}$. For $x^{j} \in X$ we define the function $u_{x}^{j} \colon \mathbb{R} \to X$ by

$$u_{x}^{j}(1+\varepsilon) \coloneqq \begin{cases} T^{j}(1+\varepsilon)x^{j}, & \varepsilon \geq -1, \\ 0, & \varepsilon < -1. \end{cases}$$

Since $\omega^{j}(T^{j}) < 0$, the function u_{x}^{j} are in $L^{2}(\mathbb{R}, X)$ and there is a constant $c \ge 0$ such that

 $\left(\int_{-\infty}^{\infty} \left\|\sum_{j} u_{x}^{j} (1+\varepsilon)\right\|^{2} d\left(1+\varepsilon\right)\right)^{1/2} \le c \left\|\sum_{j} x^{j}\right\|.$ By Plancherel's Theorem the

Fourier transform $\mathcal{F}u_x^j$ of u_x^j are also $L^2(\mathbb{R}, X)$ and $\left\|\sum_j \mathcal{F}u_x^j\right\|_2 = \sqrt{2\pi} \left\|\sum_j u_x^j\right\|_2$. Second hand, we know that

$$\sum_{j} \left(\left(\mathcal{F} u_{x}^{j} \right) (1+\varepsilon) \right) = \int_{-\infty}^{\infty} \sum_{j} e^{-i(1+\varepsilon)^{2}} u_{x}^{j} (1+\varepsilon) d(1+\varepsilon)$$
$$= \int_{0}^{\infty} \sum_{j} e^{-i(1+\varepsilon)^{2}} T^{j} (1+\varepsilon) x^{j} d(1+\varepsilon) = R \left(i(1+\varepsilon), A_{j} \right) x^{j}$$

for all $(1 + \varepsilon) \in \mathbb{R}$. Therefore

$$\left(\int_{-\infty}^{\infty} \left\|\sum_{j} R\left(i(1+\varepsilon), A_{j}\right) x^{j}\right\|^{2} d(1+\varepsilon)\right)^{1/2} \leq c\sqrt{2\pi} \left\|\sum_{j} x^{j}\right\|.$$
 (18)

Using Lemma 5.1, it follows that

$$\begin{split} \left(\int_{-\infty}^{\infty} \left\| \sum_{j} R(i(1+\varepsilon), A_j + B_j) x^j \right\|^2 d(1+\varepsilon) \right)^{1/2} \\ = & \left(\int_{-\infty}^{\infty} \left\| \sum_{j} [I - R(i(1+\varepsilon), A_j) B_j]^{-1} R(i(1+\varepsilon), A_j) x^j \right\|^2 d(1+\varepsilon) \right)^{1/2} \\ & \leq \frac{1}{1-M} \left(\int_{-\infty}^{\infty} \left\| \sum_{j} R(i(1+\varepsilon), A_j) x^j \right\|^2 d(1+\varepsilon) \right)^{1/2} \\ & \leq \frac{c\sqrt{2\pi}}{1-M} \left\| \sum_{j} x^j \right\| \end{split}$$

for every $x^j \in X$.

We now regard $(A + B)^*$. As before we can exhibit that

$$\left(\int_{-\infty}^{\infty} \left\|\sum_{j} R(i \cdot A_{j} + B_{j})^{*} x^{j}\right\|\right)^{2} \leq \frac{c\sqrt{2\pi}}{1 - M} \left\|\sum_{j} x^{j}\right\|$$

for every $x^j \in X$. So we can apply Theorem 3.3.

6. Application to Ordinary Differential Operators

Let *X* be the Hilbert space $L^2(\mathbb{R})$ and $k \in \mathbb{N}$. We regard the sequence of operators $(A_i, D(A_i))$ in *X* defined by

$$A_{j}u^{j} := i(u^{j})^{2k}, \ D(A_{j}) := W^{2k,2}(\mathbb{R}) = \left\{ u^{j} \in L^{2}(\mathbb{R}) : (u^{j})^{2k} \in L^{2}(\mathbb{R}) \right\}.$$
(19)

Here $(u^j)^{2k}$ denotes the 2*k*th (distributional) derivative of the function u^j . It is well known that $(A_j, D(A_j))$ sequence of generates a C_0 -semigroup on .

One can compute that $\mathbb{C}\setminus(i\mathbb{R}) \subseteq \rho(A_j)$ and that for $\lambda_j \in \mathbb{C}\setminus(i\mathbb{R})$ the resolvent of A_j

are given by

$$\sum_{j} R(\lambda_j, A_j) f_j(x^j) = \frac{i}{2k} \int_{-\infty}^{\infty} \sum_{j=1}^{k} \sum_{j=1}^{j} \frac{e^{-\mu_j |x^j - (1+\varepsilon)|}}{\left(-\mu_j\right)^{2k-1}} f_j(1+\varepsilon) d(1+\varepsilon) \quad , x^j \in \mathbb{R}$$

where f_j are a function in $L^2(\mathbb{R})$ and μ_j (j = 1,...,k) are the *k* solutions of the equation $\lambda_j - i(\mu_j)^{2k} = 0$ with $Re \ \mu_j > 0$.

We now define the sequence of operators $(B_j, D(B_j))$ by

$$B_j f_j := V \cdot f_j^{(l)}, \quad D(B_j) := \{f_j \in X : V \cdot f_j^{(l)} \in X\},$$
 (20)

where *V* is a potential in $L^2(\mathbb{R})$ and $l \in \mathbb{N}_0$ such that l < k.

We want to look at $B_j R(\lambda_j, A_j)$. Take $f_j \in C_c^{\infty}(\mathbb{R})$, i.e., f_j are in $C^{\infty}(\mathbb{R})$ and has compact support. For $\lambda_j \in \mathbb{C}/(i\mathbb{R})$ we compute

$$\sum_{j} B_{j}R(\lambda_{j},A_{j})f_{j}(x^{j})$$

$$= \sum_{j} V(x^{j}) \cdot \frac{i}{2k} \sum_{j=1}^{k} \sum_{j} \left(\int_{-\infty}^{x^{j}} \frac{e^{-\mu_{j}\left(x^{j}-(1+\varepsilon)\right)}}{\left(-\mu_{j}\right)^{2k-l-1}} f_{j}(1+\varepsilon)d(1+\varepsilon) \right)$$

$$\int_{-\infty}^{x^{j}} \frac{e^{-\mu_{j}\left(x^{j}-(1+\varepsilon)\right)}}{\left(-\mu_{j}\right)^{2k-l-1}} f_{j}(1+\varepsilon)d(1+\varepsilon) \left(\int_{-\infty}^{x^{j}} \frac{e^{-\mu_{j}\left(x^{j}-(1+\varepsilon)\right)}}{\left(-\mu_{j}\right)^{2k-l-1}} f_{j}(1+\varepsilon)d(1+\varepsilon) \right).$$

Now, if
$$g^{j} \in C_{c}^{\infty}(\mathbb{R})$$
 we find

$$\sum_{j} |\langle g^{j}, B_{j}R(\lambda_{j}, A_{j})f_{j}\rangle|$$

$$\leq \frac{1}{2k|\sum_{j}\lambda_{j}|^{1-(l+1)/(2k)}} \sum_{j=1}^{k} \sum_{j} \int_{-\infty}^{\infty} |g^{i}(x^{j})| |V(x^{j})| \int_{-\infty}^{\infty} e^{-Re\mu_{j}|x^{j}-(1+\varepsilon)|} |f_{j}(1+\varepsilon)|d(1+\varepsilon)dx^{j}|$$

$$\leq \frac{1}{2k|\sum_{j}\lambda_{j}|^{1-(l+1)/(2k)}} \sum_{j=1}^{k} \sum_{j} \left(\frac{1}{Re\mu_{j}}\right)^{1/2} \int_{-\infty}^{\infty} |g^{j}(x^{j})| |V(x^{j})|dx^{j}||f_{j}||_{2}$$

$$\leq \frac{||V||_{2}}{2|\sum_{j}\lambda_{j}|^{1-(l+1)/(2k)}} \frac{1}{k} \sum_{j=1}^{k} \sum_{j} \left(\frac{1}{Re\mu_{j}}\right)^{1/2} ||g^{j}||_{2} ||f_{j}||_{2}.$$

Since $C_c^{\infty}(\mathbb{R})$ is dense in $L^2(\mathbb{R})$, we have shown the estimate

$$\left\|\sum_{j} B_{j} R(\lambda_{j}, A_{j})\right\| \leq \frac{\|V\|_{2}}{2\left|\sum_{j} \lambda_{j}\right|^{1-(l+1)/(2k)}} \frac{1}{k} \sum_{j=1}^{k} \sum_{j} \left(\frac{1}{Re\mu_{j}}\right)^{1/2}$$

Page | 661 Humanities and Natural Sciences Journal Zuheir et al. December, 2022 www.hnjournal.net

$$\leq \frac{\|V\|_2}{2|\sum_j \lambda_j|^{1-(l+1)/(2k)} \min\left\{ (Re\mu_j)^{1/2} : j = 1, \cdots, k \right\}}.$$

If $\lambda_j = (1 + \varepsilon)e^{i\varphi_j}$ with $\varepsilon > -1$ and $\varphi_j \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, therefore a careful computation yields

$$\min\{(Re\mu_j)^{1/2}: j = 1, \dots, k\} = |\lambda|^{1/(4k)} (\cos\psi_k)^{1/2},$$

where

$$\psi_k = \begin{cases} \frac{\varphi_j}{2k} - \frac{\pi}{4k} + \frac{\pi}{2}, & \text{if } k \text{ is even} \\ \frac{\varphi_j}{2k} + \frac{\pi}{4k} - \frac{\pi}{2}, & \text{if } k \text{ is odd.} \end{cases}$$

Since $|\lambda_j| = Re \lambda_j (1 + tan^2 \varphi_j)^{1/2} = \frac{Re \lambda_j}{cos\varphi_j}$, we have

$$|\lambda_j|^{1-(l+1)/(2k)} \min\left\{ \left(Re\mu_j \right)^{1/2} : j = 1, \dots, k \right\}$$
$$= |\lambda_j|^{1-(l+1)/(2k)+1/(4k)} (\cos\psi_k)^{1/2}$$

$$= \left(Re\lambda_j\right)^{1-l/(2k)-1/(4k)} \frac{(\cos\psi_k)^{1/2}}{\left(\cos\varphi_j\right)^{1-l/(2k)-1/(4k)}}$$

$$= \left(Re\lambda_{j}\right)^{1-l/(2k)-1/(4k)} \left(\frac{\cos\psi_{k}}{\cos\varphi_{j}}\right)^{1/2} \left(\cos\varphi_{j}\right)^{-1/2+l/(2k)+1/(4k)}.$$

But $-\frac{1}{2} + \frac{l}{2k} + \frac{1}{4k} = \frac{1}{2k} \left(l - k + \frac{1}{2} \right) \le 0$, and $\frac{\cos \psi_k}{\cos \varphi_j}$ is bounded from below by a

constant c > 0 for all $\varphi_j \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Therefore

$$|\lambda_j|^{1-(l+1)/(2k)} min\left\{ \left(Re\mu_j \right)^{1/2} : j = 1, \dots, k \right\} \ge c \left(Re\lambda_j \right)^{1-l/(2k)-1/(4k)}$$

This exhibits the estimate

$$\left\|\sum_{j} B_{j} R(\lambda_{j}, A_{j})\right\| \leq \frac{\|V\|_{2}}{2c(Re \sum_{j} \lambda_{j})^{1 - l/(2k) - 1/(4k)}}.$$
(21)

We now can fixate the following proposition.

Proposition 6.1. Let $X = L^2(\mathbb{R})$ and let $(A_j, D(A_j))$ be defined as in (20). If $(B_j, D(B_j))$ are given by

$$B_j f_j := V \cdot f_j^{(l)}, \quad D(B_j) := \left\{ f_j \in X : V \cdot f_j^{(l)} \in X \right\},$$

where V is a potential in $L^2(\mathbb{R})$ and $l \in \mathbb{N}_0$ such that l < k, therefore the sequence

 $(A_j + B_j, D(A_j))$ generates a semigroup on *X* that are strongly continuous on $(0, \infty)$. **Proof.** Since 1 - l/(2k) - 1/(4k) > 0 by assumption, we obtain from (21) that there is M < 1 such that

$$\left\|\sum_{j} B_{j} R(\lambda_{j}, A_{j})\right\| \leq M$$

If $Re\lambda_j$ are large enough. It is easy to see that the same is true for $(A_j)^*$ and $(B_j)^*$ instead of A_j and B_j . This yields $\|\sum_j R(\lambda_j, A_j)B_jf_j\| \le M \|\sum_j f_j\|$ for $f_j \in D(B_j)$ and we can apply Theorem 3.1.

Corollary 6.2. Let $X = L^2(\mathbb{R})$ and let $(A_j, D(A_j))$ be defined as in 20. If $V \in L^2(\mathbb{R}) + L^{\infty}(\mathbb{R})$ and $(B_j, D(B_j))$ are defined as

$$B_j f_j := V \cdot f_j, \ D(B_j) := \{f_j \in X : V \cdot f_j \in X\},\$$

Therefore the sequence $(A_j + B_j, D(A_j))$ generates a semigroup on *X* that are strongly continuous on $(0, \infty)$.

Proof. We split V into an L^2 -part and a bounded part. The bounded part can be estimated by the Hille-Yosida theorem. For the L^2 -part, we use again (21) as in the proof of Proposition 6.1.

References

[1] Wolfgang, A. (1987). Resolvent positive operators. Proc. London Math. Soc.
[PubMed] [Google Scholar] (3) 54 321–349. https://doi.org/10.1112/plms/s3-54.2.321.

[2] W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander (2001). "Vector-Valued Laplace Transforms and Cauchy Problems", Birkh"auser, Basel,. https://link.springer.com/book/10.1007/978-3-0348-0087-7.

[3] Richard, B. (1972). On the abstract Cauchy problem, J. Functional Analysis **10**, 281–299. https://doi.org/10.1016/0022-1236(72)90027-4.

[4] Adam, B. (1997). On the generation of non-continuous semigroups, Semigroup Forum 54, 237–252. DOI:10.1007/bf02676605.
[5] Klaus, J, E. and Nagel, R (2000). "One-Parameter Semigroups for Linear Evolution Equations", Graduate Texts in Mathematics, Vol. 194, Springer-Verlag, New York,. https://doi.org/10.1007/s002330010042.

[6] Krein, S.G. (1971). Linear differential equations in Banach spaces (translated from the Russian by Danskin J. M.), Translations of Mathematical Monographs, Vol. 29, American Mathematical Society, Providence, RI,. https://www.amazon.com/Differential-Equations-Translations-mathematical-monographs/dp/0821815792.

[7] Pazy, A., (1983). "Semigroups of Linear Operators and Applications to Partial Differential Equations", Applied Mathematical Sciences, Vol. 44, Springer- Verlag, New York, https://link.springer.com/book/10.1007/978-1-4612-5561-1.

[8] Kazuaki, T. (1989). The theory of semigroups with weak singularity and its application to partial differential equations, Tsukuba J. Math. (2) **13**, 513–562. <u>http://dx.doi.org/10.21099/tkbjm/1496161173</u>.

[9] Kaiser, C. and Weis, L. (2003). A Perturbation Theorem for Operator Semigroups in Hilbert Spaces, Verlag New York Inc. Semigroup Forum Vol. **67**, 63–75. DOI: 10.1007/s002330010166.