

RESEARCH ARTICLE

 1 Computer Sciences, ALNeelain University

 Email: angleeee@live.com

HNSJ, 2021, 2(11); https://doi.org/10.53796/hnsj21115

Published at 01/11/2021 Accepted at 20/10/2021

HNSJ

Humanitarian & Natural

Sciences Journal

ISSN: (e) 2709-0833

www.hnjournal.net

Peer-Reviewed Journal
Indexed at: NSP - SJIF

 Arabic Impact Factor 2020 = 0.44

GRAPH APPROACH FOR ANDROID MALWARE DETECTION

USING MACHINE LEARNING TECHNIQUES

Maha Adam Gumaa1

Abstract

Day by day, the number of users of mobile devices such as smartphones and tablets is

increasing. the Android operating system is considered one of the most widely used and

widespread operating systems. However, Android based apps can be highly vulnerable to

various types of malware attacks, due to its popularity in the mobile market and its open

nature. These applications need to use a number of sensitive permission files during

installation and runtime, which malware developers exploit to launch attacks on users. In

this paper, an approach was proposed and made based on the most important permissions

and API calls. This is done by selecting and generating features based on the graph and then

using machine learning techniques to train and classify the malware detection tool. The

results of the experiment show that this approach achieves an accuracy rate of up to 97%

when using the algorithm random forest and a recall rate of 96 % which prove the

effectiveness and advantages of approach.

Key Words: Android; Malware Detection; Machine Learning; Permission; API calls;

Static Analysis

http://www.hnjournal.net/

 Humanitarian and Natural Sciences Journal Maha Adam. November, 2021 www.hnjournal.net

 Page | 190

Graph Approach for Android Malware Detection Using Machine Learning Techniques HNSJ Volume 2. Issue 11

 عنوان البحث

 علوم الحاسوب، جامعة النيلين، السودان 1

 angleeee@live.com بريد الكتروني:

HNSJ, 2021, 2(11); https://doi.org/10.53796/hnsj21115

 م 20/10/2021: القبولتاريخ م 01/11/2021النشر: تاريخ

نهج الرسم البياني لاكتشاف البرمجيات الضارة لنظام الأندرويد باستخدام
 تقنيات التعليم الآلي

 مها آدم جمعة

 المستخلص

يتزايد عدد مستخدمي الأجهزة المحمولة مثل الهواتف الذكية والأجهزة اللوحية. يعتبر نظام يومًا بعد يوم ،

يمكن ان تكون التطبيقات القائمة والمستندة علي وانتشارًا. ومع ذلك ، ستخداماا أحد أكثر أنظمة التشغيلالاندرويد

ا لشعبيتها في سوق الأجهزة المحمولة معرضة بشدة لأنواع مختلفة من هجمات البرامج الضارة ، نظرً الاندرويد

وطبيعتها المفتوحة. تحتاج هذه التطبيقات إلى استخدام عدد من ملفات الأذونات الحساسة أثناء التثبيت ووقت

والتي يستغلها مطورو البرامج الضارة لشن هجمات على المستخدمين. في هذه الورقة ، تم اقتراح نهج التشغيل ،

ميزات التحديد وإنشاء بواسطة الأذونات واستدعاءات واجهة برمجة التطبيقات. يتم ذلك ووضعه على أساس أهم

بناءً على الرسم البياني ثم استخدام تقنيات التعلم الآلي لتدريب أداة اكتشاف البرامج الضارة وتصنيفها. تظهر

ة الغابة العشوائية ومعدل عند استخدام خوارزمي ٪79 ييحقق معدل دقة يصل إل النهج نتائج التجربة أن هذا

 .مما يثبت فعالية ومزايا النهج ٪96استدعاء

 Humanitarian and Natural Sciences Journal Maha Adam. November, 2021 www.hnjournal.net

 Page | 191

Graph Approach for Android Malware Detection Using Machine Learning Techniques HNSJ Volume 2. Issue 11

1 Introduction

Smartphones and tablets have grown in popularity as their costs have decreased and

their features, capabilities, and service availability have increased. In a variety of

fields, Android devices and tablets have become an indispensable part of our daily and

practical lives. This increased the level of protection. Operating systems have also

played a significant role in the adoption and spread of mobile devices and applications,

allowing malicious software to emerge (malware). This is also true of the Android

operating system. The Android operating system has long been a major player in the

mobile operating system market. As of June 2018, the Google Play store had over 3.3

million apps [1], and Android had 54.2 percent of the global market share as of

December 2018. According to the global study, the first quarter of this year saw the

sale of approximately 329 million smartphones based on the "Android" operating

system, accounting for 86 percent of total sales. Because of its openness and free

availability, has not only become a big player in the mobile device market, but also a

desirable aim for cybercriminals [2]. Malware or malicious payload exploits Android

security problems to launch a variety of attacks, including those for privileges, remote

control, unauthorized financial charges, and personal information theft, resulting in

non-private financial losses. As a result, there is an urgent need to detect and analyze

the malicious payload when installing and using an Android app. Machine learning

techniques have been widely used in malware detection. This method approaches

malware detection as if it were a binary classification problem (for example,

classifying an application as malicious or benign). It can deal with classic pattern

recognition and machine learning techniques. This method outperforms traditional

dynamic and static methods in terms of scalability and time consumption because it

does not thoroughly investigate the substance and details of software. The two most

important factors influencing the performance of machine learning-based approaches

[2] are feature selection and learning rate [3,4]. APIs and permissions are frequently

identified as attributes because they contain detailed security information about critical

resources that processes can access. However, in most current works, these features are

extracted with the level of accuracy of the entire application, and the contexts

associated with them are ignored, resulting in a high rate of false positives in

discovery. To address this issue, we propose a static Android malware detection

method that improves on existing business by taking feature contexts into account. As

primary features, this paper identifies two types of program properties. Permissions

that are sensitive to security and the number of API calls, each of which is associated

with a different type of context These fundamental features are combined with their

contexts to produce new features, which are then used to train and test a classifier

model by embedding them in a feature vector space. The main challenge of our

approach is feature recovery in order to achieve better performance, lower

consumption, and feature generation. We define the program architecture as a

 Humanitarian and Natural Sciences Journal Maha Adam. November, 2021 www.hnjournal.net

 Page | 192

Graph Approach for Android Malware Detection Using Machine Learning Techniques HNSJ Volume 2. Issue 11

collection of graphs and provide a graph reduction transformation to simplify its

structures and improve feature generation performance. Based on the reduced graphs,

we can create an efficient feature extraction graphing algorithm. In summary, the

following are the paper's main contributions:

 propose a graph-based feature selection technique for combining the two kinds

of raw features to serve as newly created features. These features outperform

traditional machine learning-based approaches because they include rich

semantic knowledge about program behaviors.

 propose a graph-based feature generation approach that can safely remove

irrelevant graph nodes and edges and minimize the complex structure of a graph

to a simpler version because it is only concerned with the APIs and permissions

to be called. As a result, an efficient algorithm for feature generation is

produced.

3 Background and Related Work

Each and every Android application AndroidManifest.xml is included. File with the

necessary permissions and API calls and other parameters application. This list of

permissions is given to the user additional resources during installation. The

application is downloaded after the user grants all of the permissions. The application's

Java code may contain the malicious element of the malware samples. If the manifest

file has the necessary permissions, the API calls in the code are invoked. This is why

permissions are the most commonly used static feature in Android malware detection.

In recent years, Android malware detection has received a lot of attention, and many

techniques and tools have been proposed to detect the rapidly growing Android

malware. Android malware detection is classified into three major categories: static

detection, dynamic detection, and hybrid detection. In the subsections that follow, this

section reviews of related works all of the detection types that have been published in

the journal articles.

1-Static Detection: Static methods seek to examine the manifest file elements, Java

code, or the sequence of API calls within the code. In [5] Through the supervised

learning process, two machine learning (SVM) and (KNN) were applied and evaluated

to perform classification of the feature set into either benign or malicious applications

(apps). This work entails static analysis of apps, manifest files, and system call logs

generated by said app, which can improve results when compared to individual feature

analysis. and results was achieved for a dataset of real malware and benign apps

indicate the average accuracy rate of 79.08% and 80.50% with average true positive

rate of over 67.00% and 80.00% using SVM and KNN, respectively.in [6] Their ML

algorithms first individually analyze the intent filters and permissions requested in an

app's manifest.xml file. resulted in a significantly large difference in detection accuracy

as a result of due to the relatively low relevance of intent filters alone However,

combining both static features yielded detection accuracy results of 91.7% percent

(SVM) and 91.4% percent (KNN), which is an improvement over the classification

results of both individual feature sets. In [7] the work using permissions and APIs as

 Humanitarian and Natural Sciences Journal Maha Adam. November, 2021 www.hnjournal.net

 Page | 193

Graph Approach for Android Malware Detection Using Machine Learning Techniques HNSJ Volume 2. Issue 11

program features are extracted from the manifest.xml and Similar files, respectively.

employed and their effectiveness was measured using the Linear-Support Vector

Machine (L-SVM) classifier. It was observed that this classifier achieved Android

malware detection accuracy of 99.6% for the combined features. In [8] The

effectiveness of four different machine learning algorithms in conjunction with features

selected from Android manifest file permissions to classify applications as malicious or

benign is investigated in this study. And the results, on a test set consisting of 5,243

samples, produce accuracy, recall, and precision rates above 10 80%. Of the considered

algorithms (Random Forest, Support Vector Machine, Gaussian Naïve Bayes, and K-

Means), Random Forest performed the best with 82.5% precision and 81.5% accuracy.

And in [9] The study's goal is to create an efficient system for detecting malware in

Application Programmable Interfaces (APIs) and classifying it as worms, viruses,

Trojans, or normal. To classify malware that occurred in API call sequences, the Multi-

Dimensional Nave Bayes Classification (MDNBS) is used. The performance of

existing and proposed techniques is evaluated and compared using True Positive Rate

(TPR), False Positive Rate (FPR), precision, recall, f-measure, and accuracy measures.

In [10] proposed a framework based on static analysis that extracts a set of features

from an app's AndroidManifest.xml and disassembled code to actually create a features

vector SVM was used on the dataset to learn a distinction between the two types of

apps (benign and malicious).

2-Dynamic Detection: Dynamic analysis methods monitor and inspect the

implemented code's interaction with the system. The primary benefit of this technique

is that it detects dynamic code loading and records application behavior during running

time. They take time, but they are successful against malware obfuscation. In [11]

proposes a dynamic analysis approach that mimics human interactions with Monkey

Runner and extracts system API calls at runtime. It also suggests SAIL, a new feature

selection approach for discovering prominent system calls from application fields, and

then employs machine learning techniques to detect potential malicious files. In [13]

To detect malicious apps, authors examined dynamic API calls and system calls. In this

paper focus on static permissions and api based detection.

Table 1: Brief description of some earlier derived techniques with their accuracy

REF GOL METHODOLOGY DESCRIPTION ACCURCY

[5] Detection Static manifest file and system call logs 79%

[6] Detection Static intent and permissions 91%

[7] Detection Static permissions and APIs 99%

[8] Detection Static permissions and APIs 80%

[9] Detection Static API call sequences __

[10] Detection Static AndroidManifest.xml 94%

[11] Detection Dynamic API calls 95%

[13] Detection Dynamic API calls and system calls 96%

 Humanitarian and Natural Sciences Journal Maha Adam. November, 2021 www.hnjournal.net

 Page | 194

Graph Approach for Android Malware Detection Using Machine Learning Techniques HNSJ Volume 2. Issue 11

4 Implementation and Experiment

This section describes the methodology of the experiment which were performed to the

effectiveness of our model for detecting malware and extracting the features by using

graph as well as analyzing the performance of the machine learning algorithms. The

experimental methodology presented in this paper it is illustrated in the following

figure (1). In our detection model, we employ a three-pronged research methodology:

The first step is to create the CFG of the Android malware dataset, the second step is to

extract features from the CFG and create a training dataset, and the third step is to

generate classifiers based on specific machine learning algorithms and then detect

malware using these classifiers.

Figure (1) Describe architecture of the module detection.

4.1 Features extraction

The dataset has been processed throw many steps that include data cleaning, and data

transformation. Then, the processed dataset is used for extra representative features.

extract four types of features by using graph approach which are manifest permissions,

API calls signature, intent, and other features commands sign Figure 6 show that. The

permissions and API calls are strong features for detecting malware in Android

systems and they achieve good performance when they applied with machine learning

techniques. The feature extraction stage produces many features These features may

include irrelevant elements that increase the risk of overfitting and lengthen model

training time. As a result, the dataset should be transformed from a high dimension

 Humanitarian and Natural Sciences Journal Maha Adam. November, 2021 www.hnjournal.net

 Page | 195

Graph Approach for Android Malware Detection Using Machine Learning Techniques HNSJ Volume 2. Issue 11

dataset to a low dimension dataset with no loss of total information. To achieve that,

then applied the feature selection stage by selecting the most frequent permissions and

API calls in both benign and malware applications.

Algorithm 1 Graph Construction Algorithm

INPUT:

- dataset (D), columns represent the features set (F), rows represent the Android

applications values.

- categories dataset (D2) the rows describes each unique feature (Fi) category

(Ci).

Output:

frequency graph G (V, E)

1 - extract the columns (F1, F2… Fn) of D in F.

2 - Let C = (C1, C2… Cn) set of categories in (D2).

3 - For each category Ci ∈ D2, add node Vi to the set of nodes V if Vi ∈/ V.

4 - For each feature Fi ∈ D, add edge Ei to set of edges E if Ei ∈/ E.

5 - Return Graph G (V, E).

Then, used ANOVA filter (Analysis of Variance) SelectKBest method to select the

best n-features according to the k highest scores. The results show that the feature

vector with 182 features achieves the best performance. As shown in the following

algorithms. Table 7 show the features selection number for each category permissions

and API calls.

Figure (6) Explain Dataset category

 Humanitarian and Natural Sciences Journal Maha Adam. November, 2021 www.hnjournal.net

 Page | 196

Graph Approach for Android Malware Detection Using Machine Learning Techniques HNSJ Volume 2. Issue 11

Figure (2) Explain highest F-Score Features for API calls

Figure (3) Explain highest F-Score Features for Permission

The suggested framework represents the relationship between various permissions and

API calls in each application using graphs. The program utilizes Algorithm 1 to build a

graph G (v, e) by representing a single permission or single api calls at vertex V and a

couple of permissions and API calls connected by an adjusted edge e. Each edge

weight increases when the same permission and API couple appears in various

applications. An application with an only one or no permission or api calls actually

adds nothing to analysis or detection. And According to the SelectKBest method to

select the best features from the permission graph and the API graph for each

application, the best features are selected in the following table (2and 3).

 Humanitarian and Natural Sciences Journal Maha Adam. November, 2021 www.hnjournal.net

 Page | 197

Graph Approach for Android Malware Detection Using Machine Learning Techniques HNSJ Volume 2. Issue 11

Table (2): Show Feature Name for API Calls and Frequency

Feature Name for API Calls Frequency

['transact'] 0.195746

['onServiceConnected'] 0.193616

['bindService'] 0.193237

['attachInterface'] 0.19082

['ServiceConnection'] 0.175773

['android.os.Binder'] 0.172378

['Ljava.lang.Class.getCanonicalName'] 0.167181

['Ljava.lang.Class.getMethods'] 0.160376

['Ljava.lang.Class.cast'] 0.124507

Table (3): Show Feature Name for Permission and Frequency

Feature Name for Permission Frequency

['SEND_SMS'] 0.183952843

['READ_PHONE_STATE'] 0.147901394

['GET_ACCOUNTS'] 0.107922138

['RECEIVE_SMS'] 0.099231633

['READ_SMS'] 0.088655911

['USE_CREDENTIALS'] 0.083306345

['MANAGE_ACCOUNTS'] 0.079848816

['WRITE_SMS'] 0.056954176

4.2 Machine learning classifiers

The algorithms used in our module during the experiment and after the extraction and

selection of the best features are Random Forest, K-Nearest Neighbor, Decision Tree,

and Logistic Regression. Finally, the all classifier is used to determine whether a file is

malware or benign, using two distinct features: API calls and Permission.

4.3 Metrics

For the purpose of evaluating the results, we use confusion matrices that were created

for each classifier Five metrics were used for the performance emulation of the

detection approaches. These include: true positive rate (TPR), true negative ratio

(TNR), false positive ratio (FPR), false negative ratio (FNR), and weighted average F-

measure. The definition of these metrics are as follows:

True Positive Rate (TPR)

(Recall) TPR is defined as the correctly predicted value of the malware classifier. It is

 Humanitarian and Natural Sciences Journal Maha Adam. November, 2021 www.hnjournal.net

 Page | 198

Graph Approach for Android Malware Detection Using Machine Learning Techniques HNSJ Volume 2. Issue 11

True positives (TP) are the number of malware samples that are correctly classified,

while false negatives (FN) are the number of malware samples that are incorrectly

classified. True negatives (TN) are the number of benign samples correctly classified,

whereas false positives (FP) are the number of benign samples incorrectly classified.

The F-measures are the accuracy metrics that include both recall and precision.

4.4 RESULTS AND DISCUSSIONS

The main objective of this paper is to suggest an approach to detect malware under the

Android platform and to achieve this we have taken several steps starting from dataset

until machine learning models training, testing, and evaluation. It was used Dataset

consisting of feature vectors of 215 attributes extracted from 15,036 applications The

collected dataset is good enough to build android malware detection models, but it has

 Humanitarian and Natural Sciences Journal Maha Adam. November, 2021 www.hnjournal.net

 Page | 199

Graph Approach for Android Malware Detection Using Machine Learning Techniques HNSJ Volume 2. Issue 11

an imbalanced class distribution problem. This problem related to the Android malware

detection domain where there are many more benign applications than malicious. This

causes a problem and affects the model’s performance. There are many methods used

to deal with the imbalanced dataset such a OrdinalEncoder and transform. The

feature-matrix is created during the feature selection stage. The matrix is then used for

training, testing, and evaluating machine learning models. use four classifiers to

evaluate them. The five metrics T P R, F P R, calculated for this mode of supplying the

dataset are shown in Table 4.

Table 4: Explain FPR and TPR of existing proposed techniques

ML Method

TPR

FPR

DT 0.971 0.0470

RF 0.968 0.0162

kNN 0.973 0.0468

LOG 0.962 0.0599

In this research using two different types of evaluation methods 10-fold cross-

validation, 66 % split-validation and the results show that the classifier with the best

accurse Random Forest, K-Nearest Neighbor, Decision Tree, Logistic Regression

Splitting Dataset

The first method is to divide dataset into percentages, which means that classification

results are evaluated on a subset of the original data. then divided dataset by 66 percent

for evaluation. Table 5 displays the tow metrics Prec., Recall and F- measure, accuracy

calculated for this mode of supplying the data set show in Figure 4. the accuracy for

splitting data set is given. The Figure 4 shows the Random Forest is the highest

accuracy it has achieved accuracy in detecting malware of 97%. and Logistic

Regression lower accuracy it has achieved 95%

Table 5: Algorithms evaluation Splitting dataset validation

ML Algorithms

Recall

Precision

Decision Tree 97 97

Random Forest 96.8 99

K-Nearest Neighbor 97 97

Logistic Regression 96 96

Table 6: Algorithms evaluation 10-fold validation

ML Algorithms

Recall

Precision

Decision Tree 96 97

Random Forest 96.2 98

K-Nearest Neighbor 95 94.9

Logistic Regression 85.2 83

 Humanitarian and Natural Sciences Journal Maha Adam. November, 2021 www.hnjournal.net

 Page | 200

Graph Approach for Android Malware Detection Using Machine Learning Techniques HNSJ Volume 2. Issue 11

Figure 4: Accuracy and F-measure of splitting data set for all classifiers.

. Figure 5: Accuracy and F-measure of cross validation for all classifiers

 Humanitarian and Natural Sciences Journal Maha Adam. November, 2021 www.hnjournal.net

 Page | 201

Graph Approach for Android Malware Detection Using Machine Learning Techniques HNSJ Volume 2. Issue 11

. Figure 6: Explain code for Splitting Dataset by using SKlearn library

Cross Validation

WEKA divides the data set into 10 parts (called "folds"), holds out each part in turn,

and then averaged nearly the results to perform 10-fold cross-validation. As a result,

each data point in the data set is tested once and trained nine times. Table 6 displays the

results obtained by employing four different machine learning classification methods.

Figure 5 depicts the percentage accuracy achieved by all four classifiers. The Figure 5

shows the Random Forest is the highest accuracy it has achieved accuracy in detecting

malware of 97%. and Logistic Regression lower accuracy it has achieved 86.5%. K-

Nearest Neighbor and Decision Tree reports the equal second highest accuracy of

96.5%.

Processing time

Processing time is defined as the amount of time required to complete the task, which

 Humanitarian and Natural Sciences Journal Maha Adam. November, 2021 www.hnjournal.net

 Page | 202

Graph Approach for Android Malware Detection Using Machine Learning Techniques HNSJ Volume 2. Issue 11

is expressed in terms of seconds. Furthermore, it is clear that the time required to build

the model with a limited number of features is regarded as effective. According to the

results of the analysis, the proposed random forest requires less processing time than

the other methods. Because the proposed technique reduces computation complexity to

0.10 s, it takes less time to classify malware.

DISCUSSION

The aim of this paper is design a module to detect the android malware to achieve this

It was used Dataset consisting of feature extracted from 15,036 applications (5,560

malware apps from Drebin project and 9,476 benign apps). The dataset has been used

to develop and evaluate multilevel classifier fusion approach for Android malware

detection, published in the IEEE. The dataset has been many processed. This processed

used to extract the best features by using graph approach which are manifest

permissions, API calls signature. Evaluate this model by using four machine learning

classifier techniques which are Random Frost, K-Nearest Neighbor, Decision Tree,

Logistic Regression. In this model interested in the Recall metric than other metrics

because the effect of classifying benign applications as malware is less than the effect

of classifying malware applications as benign applications table 7 show that.

Table7: Features categories Experiment Results

no Features categories No of Features Recall

1 Permissions only 110 95

2 API calls only 73 96

3 Permissions & API calls 182 97.3

In summarization, the experimental results demonstrate that our detection method can

identify Android malware applications with 97.3 percent accuracy and 96.8 percent

recall for the best classifier. On average, the proposed method takes 5 seconds to

analyze.

5 Conclusion

In this paper, a static approach is proposed to detect Android malware which

concentrates on feature selection and feature generation using graphs. Combine the two

raw features permissions and API calls to create new features and train the classifier

using machine learning techniques. The evaluation results demonstrate that random

forest is the best feature set classification technique. Achieving accuracy 97.3% and

recall 96.8% the proposed approach requires 10 seconds for analysis on average. At the

moment, the approach can only provide a binary classification for an application:

malware or benign, but it cannot differentiate the malware family group of the

application or reveal the effects of malware payload on the application's behaviors.

These two flaws will be handled in the near future by enhancing existing work.

Dataset Availability

http://ieeexplore.ieee.org/document/8245867/ or

https://www.sec.cs.tu-bs.de/~danarp/drebin/download.html

http://ieeexplore.ieee.org/document/8245867/

 Humanitarian and Natural Sciences Journal Maha Adam. November, 2021 www.hnjournal.net

 Page | 203

Graph Approach for Android Malware Detection Using Machine Learning Techniques HNSJ Volume 2. Issue 11

6 References
[1] Sharma, S., Kumar, R. and Rama Krishna, C., 2021. A survey on analysis and detection of

Android ransomware. Concurrency and Computation: Practice and Experience, p. e6272.

[2] Rodríguez-Mota, A., Escamilla-Ambrosio, P.J. and Salinas-Rosales, M., 2017. Malware

analysis and detection on Android: the big challenge. In Smartphones from an Applied

Research Perspective. IntechOpen.

[3] Mahindru, A. and Singh, P., 2017, February. Dynamic permissions based android malware

detection using machine learning techniques. In Proceedings of the 10th innovations in

software engineering conference (pp. 202-210).

[4] Lee, Y.K. and Kim, D., 2020. A Taxonomy for Security Flaws in Event-Based

Systems. Applied Sciences, 10(20), p.7338.

[5] Kakavand, M., Dabbagh, M. and Dehghantanha, A., 2018, November. Application of

machine learning algorithms for android malware detection. In Proceedings of the 2018

International Conference on Computational Intelligence and Intelligent Systems (pp. 32-36).

[6] Kumaran, M. and Li, W., 2016, November. Lightweight malware detection based on

machine learning algorithms and the android manifest file. In 2016 IEEE MIT Undergraduate

Research Technology Conference (URTC) (pp. 1-3). IEEE.

[7] Singh, A.K., Jaidhar, C.D. and Kumara, M.A., 2019. Experimental analysis of android

malware detection based on combinations of permissions and API-calls. Journal of Computer

Virology and Hacking Techniques, 15(3), pp.209-218.

[8] Mcdonald, J., Herron, N., Glisson, W. and Benton, R., 2021, January. Machine Learning-

Based Android Malware Detection Using Manifest Permissions. In Proceedings of the 54th

Hawaii International Conference on System Sciences (p. 6976).

[9] Jerlin, M.A. and Marimuthu, K., 2018. A new malware detection system using machine

learning techniques for API call sequences. Journal of Applied Security Research, 13(1),

pp.45-62.

[10] Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K. and Siemens, C.E.R.T.,

2014, February. Drebin: Effective and explainable detection of android malware in your

pocket. In Ndss (Vol. 14, pp. 23-26).

[11] Ananya, A., Aswathy, A., Amal, T.R., Swathy, P.G., Vinod, P. and Mohammad, S.,

2020. SysDroid: a dynamic ML-based android malware analyzer using system call

traces. Cluster Computing, pp.1-20.

[12] Mahindru, A. and Singh, P., 2017, February. Dynamic permissions based android

malware detection using machine learning techniques. In Proceedings of the 10th innovations

in software engineering conference (pp. 202-210).

[13] Afonso, V.M., de Amorim, M.F., Grégio, A.R.A., Junquera, G.B. and de Geus, P.L.,

2015. Identifying Android malware using dynamically obtained features. Journal of

Computer Virology and Hacking Techniques, 11(1), pp.9-17.

[14] Mahindru, A. and Singh, P., 2017, February. Dynamic permissions based android

malware detection using machine learning techniques. In Proceedings of the 10th innovations

in software engineering conference (pp. 202-210).

[15] Jerlin, M.A. and Marimuthu, K., 2018. A new malware detection system using machine

learning techniques for API call sequences. Journal of Applied Security Research, 13(1),

pp.45-62.

