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Abstract  

In this paper, we introduce a new subclass of harmonic univalent functions in the 

open unit disk U  by using a symmetric differential operator. Properties for the class 

 1 2, , , ,HQ m      and  ˆ 1 2, , , ,
H

Q m      are established. 
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1. Introduction: 
Let ,u v be real harmonic functions in a simply connected domain E , then the continuous complex-valued 

function f u iv  is said to be harmonic in E .  In any simply connected domain E  , we can write 

                                                           f z h z g z  ,                                                                            (1.1) 

where f and g are analytic in E . We call h the analytic part and g co-analytic part of f . The function is 

sense preserving and univalent in E , if the Jacobian of ,f
      0

f z
J h z g z    see [7]. Let H

denote the class of functions of the form (1.1) , which are harmonic, univalent and sense-preserving in the open 

unit disk  : 1U z z  with    0 0 0f h   and  0 1zf  . We define  

                            
2

,n

n

n

h z z a z




        1

1

, 1.n

n

n
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                                                        (1.2) 

Note that, if the co-analytic of f is zero, then the class H reduces to the class of normalized analytic 

functions.  

Also let Ĥ denote the subclass of H consisting of functions f h g  in the form 
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                                                      (1.3) 

Definition 1: Let f A , which is analytic and univalent in U . For a function  f z , we formula the 

symmetric differential operator as follows: 
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                        1 2, 1 2 1
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 .                                                   

(1.4) 

For 1 2 10,    . We not that when 2 0  , we have Al-Oboudi differential operator [1], we may say that 

(1.2) is the symmetric Al-Oboudi differential operator, and the symmetric Al-Oboudi integral operator 
1 2,

m

 

will be as: 

                
   

1 2,

2
1 2 1

1

1 1 1

m n

nm
nn

f z z a z
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 .                                                   (1.5) 

We also not that when 1 1   in (1,4) and (1.5), we have the symmetric Salagean differential and integral 

operator respectively, studied by W. Ibrahim and M. Darus [3]. 

For f h g   given by (1.2), we define the operator 
1 2,

mS    as: 

                       
1 2 1 2 1 2, , , 1 1 2 01 , 0, ,

mm m mS f z S h z S g z m N              ,                                  (1.6) 

such that      1 2, 1 2 1

2

1 1 1 ,
m
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n
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Definition 2: A function f H is said to be in the class  1 2, , , ,HQ m      if it satisfies the following  

condition  
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               (1.7) 

where  
1 2,

mS f z   is defined by (1,6).  

Also, we let the subclass  ˆ 1 2, , , ,
H

Q m     consists of harmonic functions m mf h g   such that h and 

mg  are of the form  

                               
2
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                                                     (1.8) 

We note that the class    ˆ 1
ˆ, ,0,0, , ,

H
Q m MH n     introduced and studied by Yalcin S. et al. [8]. 

when    ˆ ˆ0,1,0,0,
H H

Q G   which is defined and studied  by Rosy et al. [4]. 

In this paper, we will give sufficient condition for functions f given by (1.1) to be in the class 

 1 2, , , ,HQ m      and it is shown that this coefficient condition is also necessary for functions in the class 

 ˆ 1 2, , , ,
H

Q m     . Also we obtain distortion theorem and the extreme points for functions in the class

 ˆ 1 2, , , ,
H

Q m     .      

2. Coefficient bound 

We first begin with a sufficient condition for function  f z  of  the form (1.1), and for function   mf z  of  

the form (1.8), to be in the classes  1 2, , , ,HQ m     and  ˆ 1 2, , , ,
H

Q m      respectively. 

Theorem 2.1 Let f h g   be given by (1.1). If  
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where    1 2 11 1 1
m

nm n          
  

,  0,   and 0 1,  then f is sense preserving, 

harmonic univalent in  U and  1 2, , , ,Hf Q m     . 

Proof: first,  we prove that f is sense preserving and univalent in  U . 

 Since       2 1 1 2 1mn           and       2 1 1 2 1mn          , 
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which shows f is sense preserving. 

Next, If 1 2z z , then 
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which proves univalence. 

Finally, we show that  1 2, , , ,Hf Q m     . By using the fact that Re w   if and only if, it suffices to 

show that  
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Substituting the value of  
1 2,

mS f z   and  
1 2

1
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 in (1,5) yields, by  
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                                          0 , by (1.4). 

The harmonic function  

  
         2 1

1 1

2 1 1 2 1 1

nn

n nm m
n n

f z z x z y z
 

   

 

 

 
  

         
  ,         (2.3) 

where     1 2 11 1 1
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shows that the coefficient bound given by (2.1) is sharp. 

The functions of the form ( 2.3) are in  1 2, , , ,HQ m      because  
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In the following theorem, it is shown that the condition (2.1) is also necessary for functions m mf h g  , 

where h  and mg are of the form (1.8). 

Theorem 2.2: Let m mf h g  be given by (1.8). Then  ˆ 1 2, , , ,m H
f Q m      if and only if  
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m
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Proof: Since    ˆ 1 2 1 2, , , , , , , ,HH
Q m Q m         we only need to prove ''only if '' part of Theorem 

2.2. To this end, for functions mf  of the form (1.8), we notice that the condition (1.7) is equivalent to   
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The above condition must hold for all values of , 1z z r  , we must have 
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Since  Re 1i ie e      , the above inequality reduce to  
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In the condition (2.4) does not hold then the number in (2.5) is negative for r sufficiently close to 1. Thus there 

exists a  0 0z r  in  0,1  for which the quotient in (2.5) is negative. This contradicts the condition for 

 ˆ 1 2, , , ,m H
f Q m      and hence the result. 

3. Distortion bounds  

In the following theorem we will give the distortion bound for functions in  ˆ 1 2, , , ,
H

Q m     . 

Theorem 3.1: Let m mf h g  be given by (1.8). Then for 1z r   we have  
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Proof: we only prove the right hand inequality. The proof for the lift hand inequality is similar and will be 

omitted. Let  ˆ 1 2, , , ,m H
f Q m     . Taking  the absolute value of  mf we obtain  
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The functions  
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 shows that the bounds given in Theorem 3.1 are sharp. 

The following covering result follows from the left hand inequality in Theorem 3.1 

Corollary 3.2: Let m mf h g  be given by (1.8). Then  ˆ 1 2, , , ,m H
f Q m     . Then  
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4. Extreme points 

In the following Theorem we determine the extreme points of  ˆ 1 2, , , ,
H

Q m     .  

Theorem 4.1: Let m mf h g  be given by (1.8). Then  ˆ 1 2, , , ,m H
f Q m     , if and only if  
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In particular, the extreme points of  ˆ 1 2, , , ,
H

Q m      are nh  and   
nmg   

Proof:   For functions mf of the form (4.1) we have  
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As required. 
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