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Abstract  

We study and prove endpoint bounds for derivatives of fractional maximal functions with 

either smooth convolution kernel or lacunary set of radii in dimensions 𝑛 = 2 + 𝛿 , 𝛿 ∈ ℕ. We 

also show that the spherical fractional maximal function maps 𝐿𝑝 into a first order Sobolev 

space in dimensions 𝑛 = 5 + 𝛿 , 𝛿 ∈ ℕ. 
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وريركروية وحدود نقطة النهاية لمشتقات الدوال الاعظمية الكسرية عبر مضاعفات ف  

 

 المستخلص 

لتاا  اأممس  وو الاةة الوواا  من وناا  اأمططار درسنا وبرهنا حدود النقطة لمشتقات الدوال الاعظمية الكسرية مع كل من نواة الا

𝑛    اي الابعاد = 2 + 𝛿 , 𝛿 ∈ ℕ      

 :   اي اأمبعاد  اي اضا  رواسم سوبوليف ذو الرتبة اأمولي 𝐿𝑝 يضاً ووضحنا الدوال اأمعظمية الكسرية الكرويةو

 .  𝑛 = 2 + 𝛿 , 𝛿 ∈ ℕ     
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1. Introduction 

Define the fractional maximal function as 

𝑀𝛼𝑓(𝑥) = 𝑠𝑢𝑝𝑡>0 |
𝑡𝛼

|𝐵(𝑥,𝑡)|
∫ 𝑓 𝑑𝑦
 

𝐵(𝑥,𝑡)
|  

For 𝛼 ∈ [0, 𝑛) . The study of its regularity properties was initiated in [22] by Kin-nunen and 

Saksman. They proved the pointwise inequality 

|∇𝑀𝛼|𝑓|(𝑥)| ≤ 𝐶𝑀𝛼−1|𝑓|(𝑥),    𝛼 ≥ 1                                              (1.1) 

with a constant  𝐶 only depending on the dimension 𝑛 and ∝ . This inequality has two interesting 

consequences. First, 𝑀∝ maps  𝐿𝑝(𝑅𝑛) into a frst  order Sobolev space. Second, as noted by Carneiro  

and  Madrid [8], the pointwise bound together with the Gagliardo - Nirenberg - Sobolev inequality 

implies 

‖∇𝑀𝛼𝑓‖𝐿𝑝 ≤ 𝐶‖𝑀𝛼−1𝑓‖𝐿𝑝 ≤ 𝐶‖𝑓‖𝐿𝑛 (𝑛−1)⁄ ≤ 𝐶‖∇𝑓‖𝐿1                              (1,2)  

for 𝛼 ≥ 1 and 𝑃 = 𝑛 (𝑛 − 𝛼) ⁄ When 𝛼 ∈ (0,1), inequality (3.1) no longer helps, and the conclusion 

of (1.2) is an open problem. When  𝑀𝛼 is replaced by its non-centred variant, the analogous  result is 

due to Carneiro and Madrid [8] for  𝑛 = 1 and Luiro and Madrid [28] for 𝑓 radial and. For  𝑛 =

2 . other aspects of the regularity of fractional maximal functions, see e.g. [17, 18] and the references 

therein.             The first result of  David Beltran and Olli Saari is a smooth variant of the inequality 

(1.2) for 𝛼 ∈ (0,1) and 𝑛 ≥ 2 , [40]. Define the lacunary fractional maximal function as 

𝑀𝛼
𝑙𝑎𝑐𝑓(𝑥) ≔ 𝑠𝑢𝑝𝑘∈𝑍 |

2𝛼𝑘

|𝐵(0,2𝑘)|
∫ 𝑓 𝑑𝑦
 

𝐵(𝑥 ,2𝑘)
|.  

For integrable 𝜑  and 𝑡 > 0, let 𝜑𝑡(𝑥) = 𝑡
−𝑛𝜑(𝑥 𝑡⁄ ). Assume, for simplicity, that 𝜑 is a positive 

Schwartz function and define the smooth fractional maximal function as 

𝑀𝛼
𝜑
𝑓(𝑥) = 𝑠𝑢𝑝𝑡>0𝑡

𝛼|𝜑𝑡 ∗ 𝑓(𝑥)|.  

The smoothness requirement can be substantially relaxed, see§§ 3.3. 

Corollary(1.1)[40]: Let 𝑓 ∈ 𝐵𝑉̇(𝑅𝑛) and suppose that 𝛼 ∈ (0,1) and 𝑛 = 2 + 𝛿 , 𝛿 ∈ ℕ. Then 𝑀𝛼 ∈

{𝑀𝛼
𝑙𝑎𝑐 , 𝑀𝛼

𝜑
} ,there exists a constant 𝐶  only depending on dimension 𝑛, 𝛼 and 𝜑 such that 

‖∇𝑀𝛼𝑓‖𝐿𝑝(ℝ2+𝛿 )
≤ 𝐶|𝑓|𝐵𝑉(ℝ2+𝛿 )  

𝑓𝑜𝑟  𝑝 = 2 + 𝛿 (2 + 𝛿 − 𝛼)⁄  

       The proof of this corollary uses the g-function technique familiar from Stein's spherical maximal 

function theorem. The idea is to follow the scheme behind the short estimation (1.2). The Fourier 

transform is used to find a substitute for (1.1) at the level of Besov spaces, from which the conclusion 

then follows by a refined Gagliardo-Nirenberg-Sobolev type embedding theorem [10]. The last step 

requires 𝑛 > 1 whereas the smoothness condition on the maximal operator is imposed by Fourier 

analysis. We stress that the right hand side of the conclusion is  𝐵𝑉 norm instead of the considerably 

larger homogeneous Hardy-Sobolev norm one might first expect. The detailed proof is given in §3, 

and all necessary definitions can be found in §2. To the best of our knowledge, Fourier transform 

techniques have not been exploited effectively in the study of endpoint regularity of maximal 

functions prior to this work. 

      The background of the question (1.2) goes back to Kinnunen's theorem [20, 21] asserting that the 
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Hardy-Littlewood  maximal function is bounded in W1;p with 𝑃 > 1 . His result was later extended 

to  𝑊1,1 in the form 

‖∇𝑀𝑓‖𝐿1(ℝ2+𝛿 ) ≤ 𝐶‖∇𝑓‖𝐿1(ℝ𝑛+𝛿 )                                                   (1.3) 

by Tanaka [38] when 𝑛 = 1 and Luiro [27] when 𝑛 = 2 + 𝛿 , 𝛿 ∈ ℕ[40] and  𝑓 is radial. Here 𝑀 is 

the noncentred Hardy {Littlewood maximal function. The same inequality for 𝑀0 (centred maximal 

function) was established by Kurka [23] when 𝑛 = 1 , and the question is open in dimensions 𝑛 =

2 + 𝛿 , 𝛿 ∈ ℕ[40]. Kurka's theorem can be seen as the limiting case 𝛼 = 0 of (1.2). 

      In connection to (1.3), maximal functions with smooth convolution kernels are better understood 

than the Hardy-Littlewood maximal function. Inequality (1.3) can be proved with sharp constant for 

many smooth kernels [7, 9] whereas the best constant for centred Hardy-Littlewood maximal function 

is not known (for the noncentred maximal function [2] as well as for certain non-tangential maximal 

functions [31] the constant is one). Similarly, a Hardy-Sobolev bound corresponding to (1.3) is 

known for smooth maximal functions in all dimensions [30] whereas the progress for the standard 

maximal function is limited to the case of radial functions [27]. Finally, there are metric measure 

spaces where Kinnunen's theorem does not hold but suitable smoother maximal functions satisfy a 

Sobolev bound [1]. Theorem 3.1 can be seen as a part of this line of research attempting to understand 

(1.2) and (1.3) first in the case of smooth maximal functions.  

     David Beltran and Olli Saari studies the regularity of the spherical fractional maximal function 

𝑆𝛼𝑓(𝑥) ≔ 𝑠𝑢𝑝𝑡>0|𝑡
𝛼𝜎𝑡 ∗ 𝑓(𝑥)|,                                                    (1.4) 

where 𝜎𝑡 is the normalized surface measure of the sphere 𝜕𝐵(0, 𝑡). For 𝛼 = 0, one recovers the 

spherical maximal function of Stein [36] (𝑛 ≥ 3) and Bourgain [5] 𝑛 = 2. For  𝛼 > 0, 𝐿𝑝 →

𝐿𝑞  bounds for this operator follow from the work of Schlag [33] (𝑛 = 2) and Schlag and Sogge [34] 

(𝑛 ≥ 3). It is natural to ask if the  fractional spherical maximal function has regularizing properties 

similar to (1.1) , [40]. The result of David Beltran and Olli Saari and our corollary in this direction is 

the following. 

Corollary(1.2)[40]:Let  𝑛 = 5 + 𝛿 , 𝛿 ∈

ℕ , 5 + 𝛿 (3 + 𝛿) < 𝛿2 + 4𝛿 + 5 ≤ 2𝛿2 + 7𝛿 + 5 < ∞ ⁄ and 

𝛼 (
𝛿2 + 4𝛿 + 5

𝛿 + 3
) ∶

=

{
 

 
𝛿4 + 12𝛿3 + 51𝛿2 + 96𝛿 + 70

𝛿3 + 8𝛿2 + 21𝛿 + 20
    𝑖𝑓   

5 + 𝛿

3 + 𝛿
<
𝛿2 + 4𝛿 + 5

𝛿 + 3
≤
𝛿2 + 10𝛿 + 26

𝛿2 + 8𝛿 + 34
𝛿2 + 7𝛿 + 12

𝛿2 + 4𝛿 + 5
                               𝑖𝑓  

𝛿2 + 10𝛿 + 26

𝛿2 + 8𝛿 + 34
<
𝛿2 + 4𝛿 + 5

𝛿 + 3
≤ 𝛿 + 4.                    

 

Assume that  

𝛿+3

2𝛿2+7𝛿+5
=

𝛿+3

𝛿2+4𝛿+5
−
𝛼−1

5+𝛿
,    1 ≤ 𝛼 < 𝛼(

2𝛿2+7𝛿+5

𝛿+3
)  

Then, for any  𝑓 ∈ 𝐿
(
2𝛿2+7𝛿+5

𝛿+3
)
, 𝑆𝛼 𝑓 is weakly differentiable and 

‖∇𝑆𝛼𝑓‖
𝐿
(
2𝛿2+7𝛿+5

𝛿+3
)
≲ ‖𝑓‖

𝐿
(
𝛿2+4𝛿+5
𝛿+3

).
  

          The proof of this corollary is also based on the use of the Fourier transform. When 𝑞 ≥ 2, we 
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study 𝐿
(
𝛿2+4𝛿+5

𝛿+3
)
→ 𝐿

(
2𝛿2+7𝛿+5

𝛿+3
)
 [40] estimates for a maximal multiplier operator in analogy with the 

estimates in [33, 34, 25] for the spherical maximal function. Since Corollary(1.2) is a statement at the 

derivative level, the corresponding multiplier enjoys worse Fourier decay than 𝜎 ̂. This forces us to 

study the behavior in 𝐿
(
𝛿2+4𝛿+5

𝛿+3
).

with large 𝑝 more carefully than what is needed to understand 

𝐿
(
𝛿2+4𝛿+5

𝛿+3
).

mapping properties of the spherical maximal function. We take advantage of the sharp local 

smoothing estimate for the wave equation in 𝐿𝛿+4(ℝ𝛿+5) which is available whenever 𝑛 = 𝛿 +

5 , 𝛿 ∈ ℕ thanks to recent advances in decoupling theory (see [6, 14, 15, 24, 39] and [3, 19, 26, 29, 

35] for more on decoupling and local smoothing estimates). We remark that results in 𝑛 = 4 could be 

obtained upon further progress on local smoothing estimates. 

2. Notation and Preliminaries 

2.1. Notation. All function spaces are defined over,  ℝ𝑛  and it is written, for instance  𝐿2 for 𝐿2(ℝ). 

The letter 𝐶 denotes a generic constant whose value may vary from line to line. Its dependency on 

other parameters will be clear from the context. The notation  𝐴 ≲ 𝐵 is used if  𝐴 ≤ 𝐶𝐵 for such a 

constant 𝐶 , and similarly 𝐴 ≳ 𝐵 and 𝐴 ∼ 𝐵 . The Fourier transform of a tempered distribution  𝑓 ∈

𝑆 is denoted by 𝑓 ̂or ℱ(𝑓) and its inverse Fourier transform by 𝑓−1(𝑓) 𝑜𝑟 𝑓𝑉; in particular for a 

Schwartz function𝑓 ∈ 𝑆, 

𝑓(𝜉) = ℱ𝑓(𝜉) = ∫ 𝑒−2𝜋𝑖𝑥.𝜉
 

ℝ𝑛
𝑓(𝑥). 𝑑𝑥.  

Given any multi-index  𝑟 ∈ 𝑁𝑛, 𝜕𝑟 denotes 

𝜕𝑟𝑓 = 𝜕𝑥1
𝑟1 … 𝜕𝑥𝑛

𝑟𝑛𝑓.  

For any 𝛼 ∈ ℝ , the notation  (−∇)𝛼 2⁄ is taken to denote the operator associated to the Fourier 

multiplier |𝜉|𝛼. 

2.2. Besov spaces and Littlewood-Paley pieces. Given a smooth function 𝜓 ∈ 𝐶𝑐
∞  supported 

in{𝜉 ∈ ℝ𝑛: 2−1 < |𝜉|} < 2 and such that 

∑  𝜓𝑗∈𝑍 (2−𝑗𝜉) = 1  

for 𝜉 ≠ 0, let 𝑓𝑗 denote the Littlewood-Paley piece of f at frequency 2𝑗 , given by 𝑓𝑗̂ = 𝑓 ̂𝜓(2
−𝑗𝜉) 

The Besov  semi norm for 𝐵̇𝑝,𝑞
𝑠 for 𝑠 ∈ ℝ  𝑎𝑛𝑑  𝑝, 𝑞 ∈ [1,∞] is defined as 

‖𝑓‖𝐵̇𝑝,𝑞𝑠 = (∑ 2𝑞𝑗𝑠𝑗∈𝑍 ‖𝑓𝑗‖𝐿𝑝
𝑞
)
1
𝑞⁄
;  

the seminorms defined through different Littlewood-Paley functions 𝜓  are comparable (see [4, 

Chapter 6] for further details). 

 2.3. BV space. A function f is said to have bounded variation, and denoted by 𝑓 ∈ 𝐵𝑉̇, if its 

variation, defined by 

|𝑓|𝐵𝑉 ≔ {∫ 𝑓 𝑑𝑖𝑉(𝑦);  𝑦 ∈ 𝐶𝑐
1 

ℝ𝑛
(ℝ𝑛, ℝ𝑛), ‖𝑦‖∞ ≤ 1},  

is finite, where 𝑔 = (𝑔1,… . . , 𝑔𝑛) and the 𝐿∞ norm is defined by 

‖𝑔‖∞ ‖(∑ 𝑔𝑖
2𝑛

𝑖=1 )
1
2⁄ ‖

𝐿∞
  

Note that if 𝑓 belongs to space 𝑊1,1, integration by parts allows one to identify 
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|𝑓|𝐵𝑉 = ∫ |∇𝑓|.
 

ℝ𝑛
  

See [13, Chapter 5] for more. 

2.4. Finite differences. Denote 

𝐷ℎ𝑓(𝑥) =
𝑓(𝑥+ℎ)−𝑓(𝑥)

|ℎ|
.  

Recall (see e.g [12, Chapter 5, §5.8, Theorem 3.3.1]) that if there is a finite constant  𝐴  such that 

‖𝐷ℎ𝑓‖𝐿𝑝 ≤ 𝐴  

for all ℎ ∈ ℝ𝑛, then the weak derivatives of  𝑓 exist and 

‖∇‖𝐿𝑝 ≤ 𝐶𝐴  

for a constant  𝐶 only depending on the dimension 𝑛. If  𝑆 is a sublinear operator that commutes with 

translations, then 

|𝐷ℎ𝑆𝑓| ≤ |𝑆𝐷ℎ𝑓|.  

In particular, if S is a maximal function and f is a positive function, this allows us to reduce the 

question about differentiability to bounded ness of a maximal multiplier for all Schwartz functions 𝑓. 

3.  Endpoint results 

3.1. A model result. It is instructive to start first with a model case for corollary(1.1). This consists in 

the study of the single scale version of the (rough) fractional maximal function 𝑀𝛼, defined as 

𝑀𝛼
∗𝑓 = 𝑠𝑢𝑝1≤𝑡≤2 |

1

|𝐵(𝑥,𝑡)|
∫ 𝑓(𝑦)𝑑𝑦
 

𝐵(𝑥,𝑡)
|.  

Corollary(3. 1): Let 𝛼 = 1 − 𝛿 , 𝑝 = 2 + 𝛿 (2𝛿 + 1)⁄  and 𝑛 = 2 + 𝛿 , 𝛿 ∈ ℕ. Then there is a 

constant  𝐶 only depending on dimension 𝑛 = 1 + 𝛿 , 𝛿 ∈ ℕand 𝛼 such that for any 𝑓 ∈ 𝐵̇2+𝛿 (2𝛿+1)⁄ ,1
𝛿  

‖𝑀1−𝛿
∗ 𝐷ℎ𝑓‖𝐿2+𝛿 (2𝛿+1)⁄ ≤ 𝐶‖𝑓‖

𝐵̇2+𝛿 (2𝛿+1)⁄ ,1
𝛿   

uniformly on ℎ ∈ ℝ2+𝛿. 

   By the discussion in §§2.4, Corollary(3. 1) implies an 𝐿2+𝛿 (2𝛿+1)⁄  bound for the gradient of 𝑀1−𝛿 
∗  . 

It will be shown in §§3.2 how the proof of the above estimate gives , Corollary(1. 1) for sightly 

smoother versions of the fractional maximal function, such as its lacunary version or maximal 

functions of convolution type with smooth kernels. 

Proof. Write, for  𝑓 ∈ 𝑆,  

𝑀1−𝛿 
∗ (𝐷ℎ𝑓)(𝑥) = 𝑠𝑢𝑝1≤𝑡≤2 |ℱ

−1 ((𝑡|𝜉|)1−𝛿 1𝐵(0,1)̂ (𝑡𝜉)ℱ(𝑇ℎ(−∆))
𝛿 2⁄
𝑓)|  

where 𝑇ℎis the operator defined by 

𝑇ℎ𝑔̂(𝜉) =
𝑒𝑖𝜉.ℎ−1

|𝜉||ℎ|
𝑔 ̂(𝜉) =: 𝑎ℎ(𝜉)𝑔̂(𝜉).                                              (3.1) 

Observe that  𝑇ℎ is a bounded operator on 𝐿2+𝛿 (2𝛿+1)⁄  uniformly in ℎ ∈ ℝ𝛿+2 for all  1 <

2 + 𝛿 (2𝛿 + 1)⁄ < ∞ by the Mikhlin-Hörmander multiplier theorem (see, for instance [11, Theorem 

8.10]); it is clear that |𝜕𝑟𝑎ℎ(𝜉)| ≲  |𝜉|
−|𝑟|  for all multi-indexes 𝑟 ∈ ℕ0

𝛿+2 with implicit constant 

independent of ℎ ∈ ℝ𝛿+2  . Thus, the operator  𝑇ℎ  plays no role in determining the range of 

boundedness for 𝑀1−𝛿
∗ 𝐷ℎ. 



                           Humanitarian and Natural Sciences Journal   Abdulrahman et al. December 2020    www.hnjournal.net 

 

 Page | 255                                             

Spherical and Endpoint Bounds for Derivatives of  Fractional Maximal Functions Through Fourier Multipliers  

HNSJ   Volume 1. Issue 6                                   

       Let  𝑚(𝜉) = |𝜉|𝛼1𝐵(0,1)̂ (𝜉) and 𝑚𝑡(𝜉) ≔ 𝑚(𝑡𝜉) For all 𝑡 > 0. For each 𝑗 ∈ ℤ, let  𝑓𝑗 = 𝜓𝑗 ∗

𝑓 denote the Littlewood-Paley piece of f around the frequency 2𝑗  as in §§2.2. Assume momentarily 

that the following holds. 

Corollary(3.2)[40]: Let  𝑔 ∈ 𝑆. Then for  𝑝 = 2𝑛 (𝑛 + 2𝛿)⁄  and 𝛼 = 𝑛 2 − 𝛿  ⁄ , 𝛿 ∈ ℕ    

‖𝑠𝑢𝑝1<𝑡<2|ℱ
−1(𝑚𝑡𝑔̂𝑗|‖𝐿2𝑛 (𝑛+2𝛿)⁄ ≲ (2𝑗(𝑛 2−𝛿  ⁄ )1{𝑗≤0} + 1{𝑗>0})‖𝑔𝑗‖𝐿2𝑛 (𝑛+2𝛿)⁄ .  

Then the proof may be concluded as follows. Decomposing the function f into frequency localised 

pieces  𝑓𝑗and applying Corollary( 3.2 )to the function 𝑔 = 𝑇ℎ(−∆)
1
4⁄ (2−𝑛+2𝛿)𝑓 one has 

‖𝑠𝑢𝑝1<𝑡<2|ℱ
−1(𝑚𝑡𝑔̂𝑗|‖𝐿2𝑛 (𝑛+2𝛿)⁄ ≤ ∑ ‖𝑠𝑢𝑝1<𝑡<2|ℱ

−1(𝑚𝑡𝑔̂𝑗|‖𝐿2𝑛 (𝑛+2𝛿)⁄𝑗∈ℤ   

≲ ∑ (2𝑗(𝑛 2−𝛿  ⁄ )1{𝑗≤0} + 1{𝑗>0})‖𝑔𝑗‖𝐿2𝑛 (𝑛+2𝛿)⁄ .𝑗∈ℤ     

≤ ∑ 2𝑗
1
2⁄ (2−𝑛+2𝛿)

𝑗∈ℤ ‖𝑓𝑗‖𝐿2𝑛 (𝑛+2𝛿)⁄ ~‖𝑓‖
𝐵̇
2𝑛 (𝑛+2𝛿)⁄ ,1

1
2⁄ (2−𝑛+2𝛿)

,
                                                             (3.2)  

where the last step follows from the 𝐿2𝑛 (𝑛+2𝛿)⁄  boundedness of 𝑇ℎand Young's convolution 

inequality. 

Remark (3.3): By Bernstein's inequality, 2𝑗
1
2⁄ (2−𝑛+2𝛿)‖𝑓𝑗‖𝐿2𝑛 (𝑛+2𝛿)⁄ ≲ 2𝑗‖𝑓𝑗‖𝐿1, so one may further 

bound ‖𝑓‖
𝐵̇
2𝑛 (𝑛+2𝛿)⁄ ,1

1
2⁄ (2−𝑛+2𝛿)

,
≲ ‖𝑓‖𝐵̇1,11 , in (3.2). 

       It remains to prove Corollary(3.2). This is done by interpolating an 𝐿2 bound with an 𝐿1 −

𝐿1,∞ bound as in the proof of the spherical maximal function theorem that can be found in the 

textbooks, see [37, Chapter 𝑋𝐼, §3.3] or [16, Chapter 5.5]. Writing 

ℱ−1(𝑚𝑡𝑔̂𝑗 = 𝑡𝑛 2−𝛿  ⁄ ℱ−1(1𝐵(0,1)̂ (𝑡𝜉)(|𝜉|𝑛 2−𝛿  ⁄ 𝑔̂𝑗)), 

it is clear that 

𝑠𝑢𝑝1≤𝑡≤2|ℱ
−1(𝑚𝑡𝑔̂| ≲ 𝑠𝑢𝑝1≤𝑡≤2|𝑡

−𝑛1𝐵(0,𝑡) ∗ ((−∆)
1 2(𝑛 2−𝛿  ⁄ )⁄ 𝑔)| ≤ 𝑀((−∆)1 2(𝑛 2−𝛿  ⁄ )⁄ 𝑔  

where 𝑀 is the Hardy-Littlewood maximal function. Bounds on 𝑀 and Young's convolution 

inequality then imply 

Proposition( 3.4): Let g ∈ S. Then 

‖𝑠𝑢𝑝1≤𝑡≤2|ℱ
−1(𝑚𝑡𝑔̂𝑗)|‖𝐿1,∞ ≲ 2

𝑗𝛼‖𝑔𝑗‖𝐿1  

The 𝐿2 estimate follows by estimating the Fourier decay of m after an applicationof a Sobolev 

embedding. This is the part of the proof that allows to take advantageof better symbols m later in 

§§3.3 so we write the proof in detail. 

Proposition (3.5): Let 𝑔 ∈ 𝑆 . Then 

‖𝑠𝑢𝑝1≤𝑡≤2|ℱ
−1(𝑚𝑡𝑔̂𝑗)|‖𝐿2 ≲ (2𝑗𝛼1{𝑗≤0} + 2

𝑗𝛼(−𝑛
2
+𝛼)1{𝑗>0}) ‖𝑔𝑗‖𝐿2.  

Proof. Let 𝑚̃(𝜉) = 𝜉 . ∇𝑚(𝜉) and denote by 𝑇𝑚and 𝑇𝑚̃the operators associatedto the multipliers𝑚 

and  𝑚̃. By the fundamental theorem of calculus, 

𝑠𝑢𝑝1≤𝑡≤2|𝑚𝑚𝑡𝑔𝑗| ≤ |𝑚𝑚𝑡𝑔𝑗| + 2 (∫ |𝑇𝑚𝑡𝑔𝑗|
2

1
|𝑇𝑚̃𝑡𝑔𝑗|

𝑑𝑡

𝑡
)
1
2⁄
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≤ |𝑚𝑚𝑔𝑗| + 2 (∫ |𝑇𝑚𝑡𝑔𝑗|
2

1
2𝑑𝑡
𝑡
)
1
4⁄

(∫ |𝑇𝑚̃𝑡𝑔𝑗|2
𝑑𝑡

𝑡

2

1
)
1
4⁄

                                   (3,3) 

Taking 𝐿2-norm in the above expression, an application of the Cauchy-Schwarz inequality and 

Fubini's theorem reduces the problem to compute the 𝐿∞norm of 𝑚𝜓𝑗 and 𝑚̃𝜓𝑗 . 

      Recall that  1𝐵(0,1)(𝜉)̂ = |2𝜋𝜉|−𝑛 2⁄ 𝐽𝑛 2⁄ (2𝜋|𝜉|, where 𝐽𝑛 2⁄ denotes the Bessel function of order  

𝑛 2⁄ , and 

𝐽𝑛 2⁄ (𝑟) ≲ 𝑟𝑛 2⁄ 1{𝑟≤1} + 𝑟
−1 2⁄ 1{𝑟>1};  

see, for instance, [16, Appendix B] for further details. This immediately yields 

‖𝑚𝜓𝑗‖𝐿∞ ≲ 2
𝑗𝛼1{𝑟≤0} + 2

𝑗(−
𝑛+1

2
+𝛼)1{𝑗>0}.                                          (3.4)  

Concerning 𝑚̂, the relation 

𝑑

𝑑𝑟
[𝑟−𝑛 2⁄ 𝐽𝑛 2⁄ (𝑟)] = −𝑟

−𝑛 2⁄ 𝐽𝑛 2+1⁄   

and a similar analysis to the one carried above leads to 

‖𝑚̃𝜓𝑗‖𝐿∞ ≲ 2𝑗𝛼1{𝑟≤0} + 2
𝑗(−

𝑛−1

2
+𝛼)1{𝑗>0}. 

       Putting both estimates together in (3.3) concludes the proof corollary(3.2) now follows by 

interpolation, and the proof of the model case is complete.  

3.2. Extension to the full supremum. From now on, we redefine 𝑚 to be Fourier transform of an 

integrable function smoother than 1𝐵(0,1). Momentarily assume m satisfies 

‖𝑠𝑢𝑝1≤𝑡≤2|(𝑚𝑡𝑔̂𝑗)
⋁|‖

𝐿𝑝
≲ (2𝑗𝛼1{𝑗≤0} + 2

−𝑗𝜖1{𝑗>0})‖𝑔𝑗‖𝐿𝑝,                      (3,5) 

which we next show to be enough to conclude a bound as in corollary(1.1). The proof of (3.5) is 

postponed to §§3.3.  

      Inequality (3.5) rescales as 

‖𝑠𝑢𝑝2−𝑘≤𝑡≤2−𝑘+1|(𝑚𝑡𝑔̂𝑗+𝑘)
⋁|‖

𝐿𝑝
≲ (2𝑗𝛼1{𝑗≤0} + 2

−𝑗𝜖1{𝑗>0})‖𝑔𝑗+𝑘‖𝐿𝑝,                 (3.6) 

In order to use this bound, break the full supremum over all possible scales and use the embedding 

ℓ𝑃 ⊆ ℓ∞, 

𝑠𝑢𝑝𝑡<0|(𝑚𝑡𝑔̂ )
⋁| = 𝑠𝑢𝑝𝑘∈ℤ    𝑠𝑢𝑝2−𝑘≤𝑡≤2−𝑘+1|(𝑚𝑡𝑔̂ )

⋁| ≤ (∑ 𝑠𝑢𝑝2−𝑘≤𝑡≤2−𝑘+1 |(𝑚𝑡𝑔̂ )
⋁|
𝑝

𝑘∈ℤ )
1 𝑝⁄

  

Taking 𝐿𝑝norm and using (3.10), we see 

‖𝑠𝑢𝑝𝑡>0|(𝑚𝑡𝑔̂ )
⋁|‖

𝐿𝑝
≲ ∑ (2𝑗𝛼1{𝑗≤0} + 2

−𝑗𝜖1{𝑗>0})𝑗∈ℤ (∑ ‖𝑔𝑗 + 𝑘‖𝐿𝑝
𝑝

𝑘∈ℤ )
1 𝑝⁄

  

Using the geometric decay to sum in 𝑗 ∈ ℤ and recalling 

‖𝑔𝑗+𝑘‖𝐿𝑝 = ‖(−∆)(1−𝛼) 2⁄ 𝑓𝑗+𝑘‖𝐿𝑝 ≲ 2
(𝑗+𝑘)(1−𝛼)‖𝑓𝑗+𝑘‖𝐿𝑝  

we obtain 

(∑ ‖𝑔𝑗 + 𝑘‖𝐿𝑝
𝑝

𝑘∈ℤ )
1 𝑝⁄

≲ ‖𝑓‖𝐵̇𝑝,𝑝1−𝛼  

We then claim 
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                                            ‖𝑓‖𝐵̇𝑝,𝑝1−𝛼 ≲ |𝑓|𝐵𝑉                                                                         (3.7) 

for 𝑛 > 1 and 0 < 𝛼 < 𝑛 2⁄ . This will follow from a Gagliardo-Nirenberg-Sobolev type inequality. 

Corollary(3.6)[40]: ([10]). Assume  𝛾 = 1 + 𝛿1 𝑜𝑟 𝛾 = 1 − 𝛿1 −
1
𝑛⁄  , 𝛿1 > 0  and let(𝑠; 𝑞)  satisfy 

(𝑠 − 1)𝑞′ 𝑛 = 𝛾 − 1 ⁄ for some 𝑞 = 1 + 𝛿2 , 𝛿2 > 0  where 𝑞′ = 1 + 𝛿2 𝛿2⁄  . Then, for any  𝜃 = 1 −

𝛿2 , 

‖𝑓‖𝐵̇
(1+𝛿2) (1+𝛿2−𝛿2

2
)⁄  ,(1+𝛿2) (1+𝛿2−𝛿2

2
)⁄

𝑡 ≲ ‖𝑓‖
𝐵̇1+𝛿2 ,1+𝛿2
𝑠

(1−𝛿3) (1+𝛿3)⁄
|𝑓|𝐵𝑉

(2𝛿3) (1+𝛿3)⁄
  

where 𝑝 = (1 + 𝛿2) (1 + 𝛿2 − 𝛿2
2)⁄   𝑎𝑛𝑑 𝑡 = 𝛿2(𝑠 − 1) + 1. 

      Indeed, taking 𝛾 = 0, 𝑠 = 1 2⁄ (1 + 𝛿3)  and  𝜃 = 2𝛿3 1 + 𝛿3⁄  , which are admissible for 𝑛 = 1 +

𝛿3 and 𝛼 = 1 2⁄ (1 − 𝛿3)   , 𝛿3 > 0 one has 

‖𝑓‖
𝐵̇
(1+𝛿2) (1+𝛿2−𝛿2

2
)⁄ ,(1+𝛿2) (1+𝛿2−𝛿2

2
)⁄

1 2⁄ (1+𝛿3) ≲ ‖𝑓‖
𝐵̇2,2
1 2⁄ (1+𝛿3)

(1−𝛿3) (1+𝛿3)⁄
|𝑓|𝐵𝑉

2𝛿3 1+𝛿3⁄
  

Applying Bernstein's and Minkowski's inequalities as well as Littlewood-Paley the or  y, we see 

‖𝑓‖
𝐵̇2,2
1 2⁄ (1+𝛿3) 

~ (∑ 22𝑗(1 2⁄ (1+𝛿3))
𝑗∈ℤ ‖𝑓𝑗‖𝐿2

2
)
1 2⁄

≲  (∑ 22𝑗(1 2⁄ (1+𝛿3))22𝑗1 2⁄ (𝛿3−1)
𝑗∈ℤ ‖𝑓𝑗‖𝐿(1+𝛿3) 𝛿3⁄

2
)
1 2⁄

  

= (∑ ‖𝑓𝑗‖𝐿(1+𝛿3) 𝛿3⁄

2
𝑗∈ℤ )

1 2⁄

≤ ‖(∑ |𝑓𝑗|
2

𝑗∈ℤ )
1 2⁄

‖
𝐿(1+𝛿3) 𝛿3⁄

~ ‖𝑓‖𝐿(1+𝛿3) 𝛿3⁄ .  

Inequality (3.7) then follows from the Gagliardo-Nirenberg-Sobolev inequality [13, Theorem 5.6.1. 

(i)], and we conclude  

‖𝑠𝑢𝑝1≤𝑡≤2|ℱ
−1(𝑚𝑡𝑔̂)|‖

𝐿
(1+𝛿2) (1+𝛿2−𝛿2

2)⁄ ≲ ‖𝑓‖
𝐿(1+𝛿3) 𝛿3⁄

(1−𝛿3) (1+𝛿3)⁄
|𝑓|𝐵𝑉

(2𝛿3) (1+𝛿3)⁄
≲ |𝑓|𝐵𝑉.  

Thus it suffices to verify (3.5). This is done separately in the cases when 𝑚 comes from a smooth 

kernel and when the maximal function is lacunary. 

3.3. Smooth kernel. Define the smooth fractional maximal function as follows. Let  𝜖 > 0.  Let  𝜑  

be a positive function with radial 𝐿1majorant such that 𝜑̂(𝜉) ≲  𝜑 |𝜉|−𝑛 2− 𝜖 ⁄ whenever |𝜉| > 1  and. 

For instance, any positive 𝑆𝑐ℎ𝑤𝑎𝑟𝑡𝑧 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑟 𝑒𝑣𝑒𝑛 

𝜑(𝑥) = (1 − |𝑥|2)+
𝜖   

with  𝜖 > 0 will do (see Appendix B.5 in [16]). The subscript denotes the positive part as 𝑓+ =

𝑓. 1{𝑓>0}. Now we want to analyse  𝑀𝛼
𝜑

 as defined in the introduction. A repetition of the proof of 

Proposition (3.5) gives the 𝐿2 bound 

‖𝑠𝑢𝑝1≤𝑡≤2|ℱ
−1(𝑡|𝜉|)𝛼𝜑̂(𝑡𝜉)𝑔̂𝑗|‖𝐿2 ≲ (1{𝑗≤0}2

𝑗𝛼 + 1{𝑗>0}2
𝑗(−

𝑛

2
+𝛼−𝜖)) ‖𝑔𝑗‖𝐿2.  

The 𝜖 -decay gain in the above estimate continues to hold on 𝐿𝑛 (𝑛−𝛼)⁄ , so the extra decay assumption 

(3.5) is satisfied for smooth convolution kernels. By §§3.2,Theorem (1.1) holds in this case. 

3.4. Lacunary set of radii. Similarly, there is a gain in the 𝐿2 estimate when we study the lacunary 

fractional maximal function. Now 𝑚(𝜉) = |𝜉|𝛼1𝐵(0,1)(𝜉)̂  and 

𝑐𝑛𝑀𝛼
𝑙𝑎𝑐𝑓(𝑥) = 𝑠𝑢𝑝𝑘∈ℤ |2

𝑘𝛼−𝑛𝑘 ∫ 𝑓(𝑦)𝑑𝑦
 

𝐵(𝑥,2𝑘)
| ≤ (∑ |2𝑘𝛼−𝑛𝑘 ∫ 𝑓(𝑦)𝑑𝑦

  

𝐵(𝑥,2𝑘)
|
𝑝

𝑘∈ℤ )
1 𝑝⁄
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so that it suffices to use a bound for a single dilate (3.4) and replace the Proposition (3.5) by 

‖|ℱ−1(𝑚𝑔̂𝑗)|‖𝐿2 ≲ (2𝑗𝛼1{𝑗≤0} + 2
𝑗(−

𝑛+1

2
+𝛼)1{𝑗>0})‖𝑔𝑗‖𝐿2,  

which has an extra 1 2⁄ -decay compared to Proposition(3.5). After interpolation, this leads to an 𝜖 -

decay gain in the  𝐿𝑛 (𝑛−𝛼)⁄ estimate so that (3.5) (without supremum)and Theorem(1.1) for  lacunary  

set of radii follow. 

4. Proof of Corollary(1.2) 

      Recall the definition (1.4). By the characterization  through finite differences described in §2, the 

sublinearity of  𝑆1−𝛿 and by density, it suffces to prove 

‖𝑆1−𝛿𝐷
ℎ𝑓‖

𝐿(2𝛿
2+7𝛿+5) (𝛿+3)⁄ ≲ ‖𝑓‖

𝐿(𝛿
2+4𝛿+5) (𝛿+3)⁄  

for all Schwartz functions  𝑓 uniformly inℎ ∈ ℝ(𝛿+5). 

    Observe that by means of Fourier transform, 

𝑆1−𝛿𝐷
ℎ(𝑥) = 𝑠𝑢𝑝𝑡>0|ℱ

−1(𝑡1−𝛿)|𝜉|𝜎̂(𝑡𝜉)ℱ(𝑇ℎ𝑓)(𝑥))|,                                 (4.1) 

where 𝑇ℎ  is the Fourier multiplier operator (3.1). As described in §§3.1, 𝑇ℎis bounded on 𝐿1+𝛿 for all 

𝑝 = 1 + 𝛿 , 𝛿 > 0  uniformly in ℎ ∈ ℝ(𝛿+5) by the Mikhlin-H𝑜̈rmander multiplier theorem, so it plays 

no role in determining the boundedness range for  𝑆1−𝛿𝐷
ℎ𝑓(𝑥); for this reason, 𝑇ℎ𝑓  is identified with 

𝑓 in the rest of this section.  

4.1. The case 𝑞 = 2 + 𝛿 , 𝛿 ≥ 0 It is enough to consider the single scale version of the maximal 

function in (4.1): suppose we can prove 

‖𝑠𝑢𝑝1≤𝑡>2|ℱ
−1(𝑡1−𝛿)|𝜉|𝜎̂(𝑡𝜉)𝑓𝑗)|‖𝐿2+𝛿 ≲ 2

𝑗𝑠11{𝑗≤0} + 2
−𝑗𝑠21{𝑗>0}‖𝑓𝑗‖𝐿(𝛿2+4𝛿+5) (𝛿+3)⁄                    

(4.2)  

For  𝑠1, 𝑠2 > 0.  Then rescaling gives 

‖𝑠𝑢𝑝2−𝑘≤𝑡≤2−𝑘+1|ℱ
−1(𝑡1−𝛿)|𝜉|𝜎̂(𝑡𝜉)𝑓𝑗+𝑘)|‖𝐿2+𝛿

≲ 2𝑗𝑠11{𝑗≤0} + 2
−𝑗𝑠21{𝑗>0}‖𝑓𝑗+𝑘‖𝐿(𝛿2+4𝛿+5) (𝛿+3)⁄   

under the relation 
1

𝑞
 = 

1

 𝑝
−
𝛼−1

𝑛
, and arguing as in §§3.2  

‖𝒔𝒖𝒑𝒕>𝟎|𝓕
−𝟏(𝒕𝟏−𝜹|𝝃|𝝈̂(𝒕𝝃)𝒇̂)|‖

𝑳𝟐+𝜹 
≲ ∑ (𝟐𝒋𝒔𝟏𝟏{𝒋≤𝟎} + 𝟐

−𝒋𝒔𝟐𝟏{𝒋>𝟎}) (∑ ‖𝒇𝒋+𝒌‖𝒍𝒑
𝟐+𝜹 

𝒌∈𝕫 )
𝟏 𝟐+𝜹 ⁄

≲ ‖𝒇‖
𝑳
(𝜹𝟐+𝟒𝜹+𝟓) (𝜹+𝟑)⁄

.
𝒋∈𝕫   

where the last inequality follows from Minkowski's inequality  (𝑞 ≥ 𝑝); controlling 𝑙2+𝛿norm by 𝑙2 

norm, and applying Littlewood-Paley theory to see the inner sum as 𝑙(𝛿
2+4𝛿+5) (𝛿+3)⁄ norm of  f. The 

sum in j converges as 𝑠1; 𝑠2  >  0. Hence it suffces to prove (4.2). 

    For low frequencies 𝑗 ≤ 0, we can use domination by the Hardy-Littlewood maximal function, 

Young's convolution inequality and Bernstein's inequality to see 

‖𝑠𝑢𝑝1≤𝑡≤2|ℱ
−1(𝑡1−𝛿|𝜉|𝜎̂|(𝑡𝜉)𝑓𝑗)‖𝐿

2+𝛿 ≲ ‖𝑀(−△)1 2⁄ 𝑓𝑗 ∥ 𝐿
2+𝛿 ≲ 2𝑗(2−𝛿) ∥  𝑓𝑗 ∥ 𝐿

(𝛿2+4𝛿+5) (𝛿+3)⁄ ‖  

Hence it suffices to prove (4.2) for j > 0. 

4.2. A local smoothing estimate. 

 The Fourier transform of the spherical measure is 
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𝜎̂ (𝜉) = 2𝜋|𝜉|−
𝛿+3

2 𝐽𝛿+3
2

(2𝜋|𝜉|) = ∑ 𝑎±(± 𝜉)𝑒 ±2𝜋i|𝜉|  

Where the symbols 𝑎± are in the class 𝑠−(𝛿+4) 2⁄ , that is 

|𝜕𝜉
𝛾
𝑎±(𝜉)| ≲ (1 + |𝜉|)

− 
 𝛿+3

2 − |𝛾|  

For all multi indices 𝛾 ∈ ℕ0
𝛿+5(c.f.[37,chapter VIII) . hence  

ℱ−1(𝜎̂(𝑡𝜉)𝑓 = ∑ ∫ 𝑒2𝜋𝑖(𝜉.𝑥±|𝜉|𝑡)
 

ℝ𝛿+3± 𝑎±(𝑡𝜉)𝑓(𝜉),   

so that the connection to half-wave propagator 𝑒𝑖𝑡√−△𝑓(𝑥) ≔ ∫ 𝑒𝑖.𝑥.
 

ℝ𝛿+3
𝜉𝑒𝑖𝑡|𝜉|𝑓̂(𝜉)𝑑𝜉  is evident .we 

will quote the following result:  

Corollary(4.1)[40]: (Consequence of [6]).𝐹𝑜𝑟 𝑛 = 2 + 𝛿 , 𝛿 ∈ ℕ , 𝑠 ∈ ℝ,   

(∫ ‖𝑒𝑖𝑡√−△𝑓‖
𝐿
𝑠−𝑠

(𝛿2+3𝛿+6) (1+𝛿)⁄
+𝜃

(𝛿2+3𝛿+6) (1+𝛿)⁄
(ℝ2+𝛿)

(𝛿2+3𝛿+6) (1+𝛿)⁄2

1
𝑑𝑡)

1 𝑝⁄

≲ ‖𝑓‖
𝐿𝑠
(𝛿2+3𝛿+6) (1+𝛿)⁄

(ℝ2+𝛿)
  

holds for 𝜃 = (1 − 𝛿3 − 3𝛿2 − 5𝛿) (𝛿2 + 3𝛿 + 6) , 𝛿 ∈ ℕ ⁄ , and 𝑠(𝛿2+3𝛿+6) (1+𝛿)⁄ = (1 + 𝛿) (
1

2
−

(𝛿2+3𝛿+6)

(1+𝛿)
) whenever  𝑝 =

(𝛿2+3𝛿+6)

(1+𝛿)
. 

   This can be found as Corollary(1.3) (i) in [14] knowing that the conjectured value of 𝑝𝑑 in Table 1 

of that paper has later been verified by [6]. 

Proposition (4.2): Let g be a Schwartz function and 𝑗 > 0. For any 𝜖 > 0  

‖𝑠𝑢𝑝1≤𝑡≤2|𝜎𝑡 ∗ 𝑔𝑗|‖𝐿𝑛−1 ≲ 2𝑗(𝜖−1)‖𝑔𝑗‖𝐿𝑛−1 

Proof. For  𝑗 >  0  and a smooth bump 𝑥 around [1, 2], we have 

‖𝑠𝑢𝑝1≤𝑡≤2|𝜎𝑡 ∗ 𝑔𝑗|‖𝐿𝑛−1 ≲ ‖(1 +
√−𝜕𝑡

2)𝑟𝑥. 𝜎𝑡 ∗ 𝑔𝑗‖
𝐿𝑛−1(ℝ

𝑛+1)
  

≲ 2𝑗(𝑟+𝑠𝑝−𝜃− 
𝑛−1

2
+𝜖)‖𝑔𝑗‖𝐿𝑛−1(ℝ𝑛)  

where we used Sobolev embedding with 𝑟 > 1 (𝑛 − 1)⁄ , Corollary(4.1) with 𝑝 =  𝑛 − 1 as well as 

Young's convolution inequality. Simplifying the exponent in accordance with Corollary(4.1), we 

obtain the claim.  

4.3. 𝐿𝑝 → 𝐿𝑞 estimates. To finish the proof of (4.2), we prove 𝐿𝑝 → 𝐿𝑞 estimates following the 

interpolation scheme of Lee [25] enhanced with the sharp local smoothing estimate. Denote 

𝑆𝑗
∗ 𝑓(𝑥) ∶=  𝑠𝑢𝑝1≤𝑡≤2 |ℱ

−1 (𝜎̂(𝑡𝜉)|𝜉|𝑓𝑗̂(𝜉)) (𝑥)| 

where 𝑓𝑗̂  =  𝑓𝜓𝑗  still stands for Fourier localization at the level of a Littlewood-Paley piece of 

frequency 2𝑗 . 

Proposition (4.3): Let  𝑃  be the open convex polygon with vertices 

𝐴 = (
𝑛 − 2

𝑛
−
2

𝑛
)        ,          𝐵 = (

𝑛2 − 2𝑛 − 1

𝑛2 + 1
 ,
2(𝑛 − 1)

𝑛2 + 1
) 
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              𝐶 = (
1

𝑛 − 1
 ,

1

𝑛 − 1
)     ,           𝐷 = (

𝑛 − 2

𝑛
 ,
𝑛 − 2

𝑛
)                                 

Then 

‖𝑆𝑗
∗𝑓‖

𝐿𝑞
≲ 2−𝜀𝑗‖𝑓𝑗‖𝐿𝑝 

for some ε >  0 and all  j >  0  provided that  (1 p⁄  , 1 q⁄ ) ϵ P. 

Proof. Since supp  𝜎̂. 𝜓𝑗(𝑡𝜉) ⊂ {|𝜉 ∽ 2
𝑗|}, we can assume that b 𝑓 is supported in anannulus around 

|𝜉| = 2𝑗. We use the following bounds: 

‖𝑆𝑗
∗𝑓‖

𝐿1
≲ 22𝑗‖𝑓𝑗‖𝐿1 

‖𝑆𝑗
∗𝑓‖

𝐿∞
≲ 22𝑗‖𝑓𝑗‖𝐿1

 

                                         ‖𝑆𝑗
∗𝑓‖

𝐿𝑛−1
≲ 22‖𝑓𝑗‖𝐿𝑛−1   for all 𝛿 >  0                                 (4.3) 

‖𝑆𝑗
∗𝑓‖

𝐿2
≲ 2

𝑛−4
2
𝑗‖𝑓𝑗‖𝐿2 

‖𝑆𝑗
∗𝑓‖

𝐿
2(𝑛+1)
𝑛−1

≲ 2−𝑗
𝑛2−4𝑛−3
2𝑛+2 ‖𝑓𝑗‖𝐿2 . 

To verify (4.3), use Proposition(4.2) as well as Young's convolution inequality to obtain 

‖𝑆𝑗
∗𝑓‖

𝐿𝑛−1
≲ 2−𝑗(1−𝛿)‖(−∆)1 2⁄ 𝑓‖

𝐿𝑛−1
≲ 2𝑗𝛿‖𝑓𝑗‖

𝐿𝑛−1
. 

The other inequalities follow similarly, that is, by borrowing the corresponding bounds for the 

spherical maximal function (inequalities (1.7) - (1.10) in [25]), and applying Young's convolution 

inequality. Interpolating the bounds above, we obtain the claimed proposition 

For each 𝑝 >  1, we want to find the values of 𝛼 such that (1 𝑝⁄  ;  1 𝑞⁄ )  ∈  𝑃 when 

(𝛼 − 1) 𝑛 = 1 𝑝⁄⁄ − 1 𝑞 ⁄ and 𝑞 ≥  2. When 𝑞 ≥  2 is assumed, this happens when 

𝑛

𝑛 − 2
< 𝑝 ≤

𝑛2 + 1

𝑛2 − 2𝑛 − 1
 , 𝛼 <

𝑛2 − 2𝑛 − 1

𝑛 − 1
−

2𝑛

𝑝(𝑛 − 1)
 

or 

𝑛2 + 1

𝑛2 − 2𝑛 − 1
< 𝑝 ≤ 𝑛 − 1,   𝛼

𝑛 − 1

𝑝
. 

   This concludes the proof for the case 𝑞 ≥  2. Notice that the restriction 𝑞 ≥  2 is not dictated by 

validity of 𝐿𝑝 → 𝐿𝑞 estimates but it was required in order to upgrade the single scale bounds to 

bounds for the full maximal operator in §§4.1. 

4.4. The case 𝑞 ≤  2. Next we remove the assumption 𝑞 >  2 . Let 

𝑇∗𝑓(𝑥) =  𝑠𝑢𝑝𝑡>0 |ℱ
−1 ((𝑡|𝜉|)𝛼𝜎̂(𝑡𝜉)𝑓(𝜉)) (𝑥)| . 

The operator 𝑆𝛼 in (4.1) can be written 

𝑆𝛼= 𝑇∗𝐼𝛼−1𝑇ℎ𝑓 

where  𝐼𝛼−1𝑓̂ = |𝜉|
1−𝛼𝑓 ̂is the Riesz potential of order  𝛼 − 1 and 𝑇ℎ are as in (3.1). As discussed in 

§§3.1, 𝑇ℎ are bounded in 𝐿𝑝 for all 𝑝 >  1. Also, by the Hardy-Littlewood-Sobolev inequality 𝐼𝛼 − 1 
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is bounded 𝐿𝑝 → 𝐿𝑞 ; for 𝑝, 𝑞 obeying 
𝛼−1

𝑛
=

1

𝑝
−

1

𝑞
 . Therefore, it is enough to analyse the operator 

𝑇∗. 

     Let 𝑚(𝜉) = |𝜉|𝛼𝜎̂(𝜉) and take a Littlewood-Paley function  𝜓  (as in §2). We define 𝑚1 =

∑ 𝜓𝑗𝑗>0 𝑚  and  𝑚0 = ∑ 𝜓𝑗𝑚𝑗≤0  Take 𝑇𝑗
∗ to be as 𝑇∗ but 𝑚 replaced by 𝑚𝑗 . Then 

𝑇∗𝑓 ≤ 𝑇0
∗ + 𝑇1

∗𝑓.  

We first bound  𝑇0
∗ . A straightforward computation shows that m0 is bounded and for any multi-

index  𝛽 ∈ ℕ𝑛  with |𝛽|  =  𝑘, 𝑘 ≤  𝑛 +  1 

|𝜕𝜉
𝛽 
𝑚0(𝜉)| ≲ |𝜉|

𝛼−𝑘  

so that 

‖(1 + |. |)𝑛+1ℱ−1(𝑚0)‖𝐿∞ ≲ 1  

(because 𝛼 >  1). Consequently 

𝑇0
∗𝑓 ≲ 𝑀𝑓  

and boundedness in any 𝐿𝑝 with 𝑝 >  1 follows from that of the Hardy-Littlewood maximal function. 

To bound 𝑇1
∗ , we use a part of Theorem 𝐵 from [32]: 

Theorem (4.4): (Rubio de Francia [32]). Let 𝑚 be a function in 𝐶𝑠+1(𝑅𝑛) for some integer   𝑠 >

 𝑛 2⁄   such that |𝐷𝛼𝑚(𝜉)| ≲ |𝜉|−𝑎 for all  |𝛼| ≤ 𝑠 + 1. Suppose also that 𝑎 >  
1

2
  : Then the maximal 

multiplier operator 𝑇∗𝑓 ∶= 𝑠𝑢𝑝𝑡>0|ℱ
−1(𝑚(𝑡 .)𝑓|  is bounded in 𝐿𝑟, for 

2𝑛

2𝑛+2𝑛−1
< 𝑟 ≤ 2  

   Since ∑ 𝜓𝑗𝑚𝑗<0   is smooth and satis |𝐷𝛼𝑚(𝜉)| ≲ |𝜉|−𝑎,  for all |𝛼| ≤ 𝑠 + 1 

with 𝑎 =
𝑛−1

2
− 𝛼 , we can apply the theorem to conclude the proof whenever 

2𝑛

2𝑛−2−2𝛼
< 𝑞 ≤ 2 ,     𝑎 >

1

2
  

which is equivalent to  𝑝 >
𝑛

𝑛−2
 and 𝛼 <

𝑛−2

2
 . However, given 𝑝 >

𝑛

𝑛−2
 , the condition  𝛼 >

𝑛

𝑛−2
 is 

automatically satisfied whenever 𝑞 ≤  2. Hence 𝛼 < 𝛼(𝑝) is an active constraint only when 𝑞 >  2. 
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