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Abstract

In this paper, we study the bivariate Dirichlet distribution and discusses some important
statistical properties such as product moments, covariance, and the correlation coefficient. It
also introduces a simple method for generating random pairs (X, Y) based on the marginal
distribution of X and the conditional distribution of Y|X=x. Furthermore, Estimation of the
parameters for the bivariate Dirichlet distribution are derived using method of moments
(MME). Maximum likelihood estimator (MLE) are also presented. Finally, it includes a
simulation to evaluate the efficiency of the estimators based on bias and mean squared
error.
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1. Introduction

The bivariate beta distribution is one of the basic distributions in statistics, as it attracts
useful applications in several areas; for example, in the modeling of the proportions of
substances in a mixture, brand shares, i.e the proportions of brands of some consumer product
that are bought by customers (Chatfiled [1975]), proportions of the electorate voting for the
candidate in a two candidate election (Hoyer and Mayer [1976]) and the dependence between
two soil strength parameters (A_Grivas and Asaoka

[1982]).

Bivariate beta distributions have also been used extensively as a prior in Bayesian statistics
(see, for example, Apostolakis and Moieni [1987]). The Dirichlet distribution is multivariate
generalization of the beta distribution, hence its alternative name of multivariate beta
distribution . Several applications of the Dirichlet distribution are discussed by Wilks
[1962], Goodhardt et al [1984], Lange [1995], Bouguila et al [2004], Null [2009] and Wang
et al [2011]. Estimation of parameters of bivariate Dirichlet distribution by maximum
likelihood is discussed by Nadarajah and Kotz [2007] and estimation parameters of the
Dirichlet distribution based on entropy by Sahin et al [2023].

This paper commences in Section 2 with an exposition of the marginal distributions
associated with the bivariate Dirichlet distribution. This section further provides a thorough
examination of their statistical properties, specifically addressing moments, product moments,
covariance, and the correlation coefficient. Following this, Section 3 introduces the
conditional distributions and explores their moment characteristics. A practical and accessible
approach for generating random varieties from the distribution is outlined in Section 4.
Section 5 is dedicated to the derivation of estimators for the distribution's parameters utilizing
the method of moments. In addition, the maximum likelihood estimators (MLE) are presented
and discussed. To conclude, Section 6 presents a simulation study conducted to assess the
efficiency of the proposed estimators. As an alternative, this final section may present a
numerical illustration to validate the findings presented in Sections 4 and 5.

The present work focuses on the bivariate Dirichlet distribution, parameterized by
positive values a,b,c, and d, which is defined by the subsequent probability density function

(pdf):
fX,Y (X1 y): K Xa_lyb_l(l_ X)C_b_d (1_ X—= Y)d_1 (1)
for,x>0,y>0,x+y<la>0b>0,c>0and d >0

and

1

B B(a,c)B(b,d) @

The distribution in (1) is the bivariate form of the Connor and Mosimann’s generalized Dirichlet
distribution (see Connor and Mosimann [1969]). It has several applications in many areas,
including Bayesian statistics, contingency tables, correspondence analysis, environmental
sciences, forensic sciences, geochemistry, image analysis and statistical decision theory (see Gupta
and Nadarajah [2004] for illustrations of some of these application areas).

We will define some properties estimator. these properties will help us in deciding whether
one estimator is better than anther.

Definition 1: The point estimator #is an unbiased estimator for the parameter ¢ if
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E(0)=0

If the estimator is not unbiased, then the difference
E(6)-o,
is called the bias of estimator 4.

Definition 2: The mean squared error (MSE) of an estimator 4 of the parameter ¢is defined
as

MSE(9)=E(0 - of
The mean squared error (MSE) can be rewritten as follows :
MSE(9)=E(0-E(@0)f +(0-B(@)
:Var(é)Jr (bias )’

The calculations throughout this paper involve some special function, including the beta type
I

1

f, (X)= B@.B) X“tA-x)"?! 0<x<1 (3)
B(a, ) = [t (L-1)". 4

The rth moment of X is

. B(a+ r,,B)
E(X")=—C "2 (%)
B(a, B)
The Gauss hypergeometric function
1 ¢ o, g s
ZFl(é‘,ﬂz;ﬂ-f-ﬂ;X):m.gui l(l—U)y 1(1—XU) bdu (6)
where Re 4 >0, Re x>0, which is given in a series form by
2 (6);(4); x
F.(0,4; 1, X) = - (7)
2 1( ) JZ(;, (,U)j J!

where [x| <1, and (f), = f(f +1)...(f +k —1) denotes the ascending factorial.

The hypergeometric function type |

Ty +v-a)l(y+v-4) s 4 .
f = 1-x)",F 1-— 8
X(X) F(}/)F(V)F(}/+V—a—,8)x ( X) 2 1(a’ﬂ'71 X), ()
where0 < x <1, Re(y +v—a - 4)>0,Rev>0and y >0. (see Gupta and Nagar [ 2000],
p298).
The rth moment of X is

E(Xr)=F(7+v—a)F(7/+v—,b’) CV+r)C(y+v+r—a—-p) )

TVr(y+v-a-p) T(y+v+r—a)(y+v+r-p)’

where Re(y +v+r—a - )>0.(for proof see Nagar.D and Alvarez,A.J [2005])
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The properties of the above special function can be found in (Gradshteyn and Ryzhik
[1980] , p 284,984,286,1040 and 298).

2. Marginal Distributions

This section focuses on the derivation and analysis of the marginal distributions of the
components X and Y of the bivariate Dirichlet distribution given by its probability density
function (pdf) in Equation (1). We further explore key statistical properties of these marginal
distributions, specifically their moments, product moments, covariance, and correlation
coefficient.

2.1. The Marginal Distribution of X
Integrating Equation (1), with respect to y, we obtain the marginal pdf of X given by

1
B(a,c)

f (X)= X2t 1-x)! 0<x<1

Note that the marginal pdf of X isB,(a,c) see(3).
From Equation (5) , we find that

a
B0 =% (10)
and
ac
var) = axcrn@=o)y D

2.2. The Marginal Distribution of Y
Integrating Equation (1), with respect to X, we obtain the marginal pdf of Y given by
f (y)=A1-y)" " F(a,b+d-cid+al-y) O<y<l (12)

_ T(a+c)(b+d)
" T(b)I'(c)I(d + a)

Note that the marginal pdf of Y is H,(b,a,b+d —c,a+d) see (8).

where A and,F.,(a,b+d—c;d +a;1-y) is defined in (6)

From Equation (9) , we have

bc
SRR “3’

be(ba(o +d +1) +cd(a+c+1) +da)
(a+c)’(b+d+1)*(@a+c+1)

Var(Y) = (14)

2.3. Product Moments

Theoreml: If X and Y are jointly distributed random variables with the joint pdf in Equation
(1), then

E(X"Y™)=KB(a+n,c+m)B(b+m,d) (15)

1

fora+n>0,b+m>0,c+m>0and K=—————
B(a,c)B(b,d)

Proof: Knowing that
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E(X"Y™)= T TX Y™ (%, y)dydx

—00—00

and  substituting  with  Equation (1) into  Equation

11-x

E(X ny m): KJ' J'Xa+n—1yb+m—1(1_ X)cfbfd (1_ X — y)d—l dde
0

1 - d-1
a+n -1 1 X C b-d b+m-1 X{l— y J dv ldx
R IR

Using the transformation u = L we get

—x

1

B(X"Y")=K[x*"(1- x“’lU ul—x)P ™t -u) - x)du}ix
0

0

1 1
_ KI Xa+n—1(1_ X)c+m—1 dXJ‘uber,l (1_ U)d_ldu

0 0
Using Equation (4) in the above equation , we obtain Equation (15).
This completes the proof of the Theorem.
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(16)
(16),

we

get

Theorem2:If X and Y are jointly distributed random variables with the joint pdf in Equation

(1), then the correlation coefficient of X and Y is given by

o ab(b+d +1)
P~ \{cd(a+c+1)+ (ba(b+d +1) + da}

Proof: First to compute the covariance of X and Y given by
Cov(X,Y)= E(XY)-E(X)E(Y)

(17)

(18)

From Equations (15), (10) and (13),
abc a bc
Cov(X.¥)= (a+c+l@+c)b+d) (a+c)(a+clb+d)
B abc
(@a+c+D(a+c)’(b+d)

Now, we determine the correlation coefficient of X and Y
cov(x, y)
JJvar(x) var(y)
Using Equations (18), (11) and (14), we obtain Equation (17).
3. The Conditional Density Functions:

we

get

In this section, we study the conditional distributions of X and Y are jointly distributed

with the pdf (1).we also derive the conditional moments.

Theorem 3: If X and Y are the jointly distributed random variables with the joint pdf (1),

then the conditional pdf of Y given X=xis given by
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=)y V(v )"
fY|X(y|X)=B(b a) T 1—m , O<y<1l-x0<x<l1. (19)
Equivalently,
1 b-1 d-1
f(L|X_Xj=_(Lj @Lj S o0<Y a1 (20)
1-x B(b,d)\1-x 1-x 1-x

Proof: The conditional density function f,,(y|x)is

f )
fY|x(y|X):M, O<y<l-x, 0<x<1.
fy (%)
Using (1) and (3), we have
£ X) = oy e L x )

~ B(a,c)B(b,d)

B(a,c)

Which can be rewritten as

1 yb—l(l_x_ y)d—l

fv\x()’| X)ZB(b d) T O<y<l-x, 0<x<1l

leading to the result given in (19).
Obviously, the result in (20) follows, directly.

Theorem 4: If X and Y are the jointly distributed random variables with the joint pdf (1),
then the conditional pdf of X givenY =y is given by

Fo (61)= B(a,d), F(a, b(1+_dyz ca+dl— Y)[li( yJa_l(l_ ﬁ)d_l

—(b+d—c)

X [1_MJ (21)
1-y

O0<x<l-y0O<y<l

Equivalently,

X |- L V)
1-y ") B(ad),FR(ab+d-ca+di-y)\1-y -y

—(b+d—c)
y (1_MJ

1=y (22)

where 0 <2~ <1,

1-y
Proof. The conditional density function of f, (x|y) is obtained by diving f,,(x,y) in
Equation (1) by f, (y) in Equation (12). Thus
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1 a-1,,b-1 c-b-d da-1
fX|y(X|Y)=mX y T (@1-x) L-x-y)

-1
x( [a+crb+d) Y-y F(a,b+d —ca+dil- y)}

r(b)r(c)r(a+d)

_ T(a+d) X=X - x—y)*?
" r(@)r(d) @-y)** % F (a,b+d—ca+dil-y)

O<x<l-y0<y<l.

which leads to the result in Equation (21).

The conditional distribution of X/(1-Y) given Y=y in Equation (22) then follows.

Note that the result (20) belongs to the standard beta family with parameters b andd , and the
result (22) belongs to( Libby and Novick’s [1982] ) generalized beta family with parameters
a,dl-yandb+d-c.

Theorem 5: If X and Y are the jointly distributed random variables with the joint pdf (1),
then
_(1-x)b

E(Y|X) b+d

(23)

and

(1—x)2bd

var(Y |x)= (b+d+1)(b+d)>

(24)

Proof: Since the distribution of 1L given X =x is B,(b,d), then from Equation (5) ,we
—X

have
Y b
E — 25
(1—x|x‘xj b+d (25)
and
Y bd
Var(——|,_,) = 26
(1—X|X7) (b+d+1)b+d)’ (26)

Equations (25) and (26) can be simplified to obtain Equations (23) and (24).
From Equation (23), we see that with non-homoscedastic variance.

Theorem 6: If X and Y are the jointly distributed random variables with the joint pdf (1),
then

all-y),FR(@+Lb+d-cia+d+11-vy)

E(X = 27
(x1) (a+d) ,F(ab+d-cia+dl-y) @)
and
Var(X|y)=a(1_y)2 L @+1) F.(@a+2,b+d-ca+d+21-y)
(a+d) ,F(ab+d-cia+di-y)|l(a+d+1)* * ' ’ ’
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a )((2 F(a+Lb+d-ca+d+11-y)) J}

(a+d ,F(ab+d-ca+dl-y) (28)

X % X X
b= (5] 125
-y X (a+)-1 X d-1 X ~(b+d—c)
=M | | — 1-—— 1—(1—y)—] dx,
! (1—3/} ( 1- yj ( 1-y

1
B(a,d),F(a,b+d —c;a+dl-y)

Proof: The first moment of (%NJ IS

where M =

Solving the above integral by using (6),we get

E L| _ B(a+1d),F(a+Lb+d-cia+d+11-y)
-y Ba,d) ,F(ab+d-ca+dil-y)

a ,F(@+Lb+d-ca+d+1l-vy)

= 29
(a+d) ,F(ab+d-ca+dil-y) (29)
Next, we determine the second moment of (%le
2 1oy (a+2)-1 d-1 ~(b+d—c)
E [—X J ooy |=M | (—X J (1——)‘ j (1—(1—y)—x j dx.
1-y o \1-y 1-y 1-y
Using Equation (6),we get
o [ X 2| _Ba+2,d),F(a+2b+d-ca+d+21-y)
1-y) B(a,d) ,F(ab+d-cia+dl-y)
~al@+1) ,FR(@+2b+d-ca+d+21-y)
(a+dYa+d+1) ,F(ab+d-ca+dl-y)
Then the conditional variance is
var| % e ala+1) ,F(a+2b+d-ca+d+21-vy)
-y ') (a+dfa+d+1) ,F(ab+d-ca+dl-y)
o a ,F(a+Lb+d-ca+d+11-y)\
(a+d) ,F(ab+d-cia+dl-y)
a 1 (a+1)
= Fla+2,b+d-cia+d+21-
(a+d)zFl(a,b+d—c;a+d;1—y){((a+d +1)° 1( y)]
_a ((Fl+Lb+d-ca+d+L1-y)) (30)
(a+d) ,F(ab+d—-ca+dl-y)

Equations (29) and (30) can be simplified to obtain Equations (27) and (28).
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4. Algorithm for Generation of (X,Y) Observations

This section details a straightforward algorithm for simulating observations (X,Y) from the
bivariate Dirichlet distribution defined by its probability density function (pdf) in Equation
(1). As demonstrated by the marginal distribution of X being Beta(a,c) (Equation 3) and the
conditional distribution of 1 __Y_ being Beta(b,d) (Equation 20), we can exploit this

hierarchical structure for data generation. The following algorithm provides a simple method
to obtain bivariate observations from the target distribution:

Algorithm 1
Step 1: Generate a value for X from a Beta distribution with parameters a and c.

Step 2: Generate a value for T independently from a Beta distribution with parameters b and
d.

Step 3: Calculate the corresponding value for Y using the transformation Y=T(1-X).

Step 4: The resulting pair (X,Y) constitutes a generated observation from the bivariate
Dirichlet distribution.

5. Parameter Estimation

This section focuses on the estimation of the parameters of the probability density function
(pdf) provided in Equation (1). Specifically, we derive the estimators using the method of
moments and subsequently present the maximum likelihood estimators (MLES).

5.1 Method of moments estimation

Suppose (X,,Y,)....(X,.Y,) is a random sample from the distribution (1). Using the first two

moments of the marginal distribution of X and the conditional distribution of Y/(1-x) given
X=X, we derive the estimators of a,c and b,d respectively, as follows:

If azb#c=d,

For obtaining estimators ofa and c, we set

n2 X)X = o
and
%zl“xf =E(X?)=Var(X )+ (E(X))* = (a+i()?a++1i+l) (32)

For obtains estimators of b and d, we set

1e( Y, ) b

H;[l_xi]_(b-f-d) (33)
13 Yi 2_ b(b+1)

H;(l—xij “b+dYbrd+1) (34)

Solving simultaneously Equations ((31)- (34)) for a,b,c and d we get
Respectively the corresponding method of moments estimators (MMES)
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a=— (35)
=3xS -X?
N
= 1,
(1—x{x—2xl j
b= (36)
=Y X2-X?
N
p-YV-u) @37)
u-v
and
§_a-viv-u) (38)
u-v
2
1&( Y, 13y,
herevV=-%|—"|andu==-%|—1 |,
where ;(LXJ an n;[l—XJ

Clearly 4and ¢ are moments estimators, while b and d are approximate moments estimators.
5.2. The Maximum Likelihood (MLE)

Let (X,,Y,)...(X,,Y,) be a random sample from the distribution (1). Nadarajah and Kotz
[2007] studied the maximum likelihood (MLE) estimators of the distribution (1).

Then, the maximum likelihood (MLE) estimators of (a,b,c,d)are obtained by solving the
following equations simultaneously for a,b,c and d.

Zn: log x, = -ny(a+c)+ny(a) (39)
anlog Y, —anlog(l—xi):—ny/(b+d)+n1//(b) (40)
> logL—x) = -np(a+c)+ny(c) (41)
and

> 10gt-x - )~ loglA-x) = —ny(b-+d)+ny(d) 2)

where (x)=d logT'(x)/ dx denotes the digamma function.

There is no exact solution for Equations (39)-(42), but can be solved numerically.
6. Numerical illustration

A numerical comparison of the method of moments and maximum likelihood estimation
(MLE) was conducted to evaluate their performance in terms of mean squared error (MSE)
and bias. This involved generating 200 independent random datasets from the bivariate
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Dirichlet distribution specified in Equation (1), with each dataset having a sample size of
ne{5,10,15,20,30}. The simulated observations (X,Y) were generated according to Algorithm
1. For each of the 200 simulated datasets, the parameter estimates were obtained for different
combinations of a,b,c, and d by applying the formulas derived for the method of moments in
Equations (35)-(38) and for the maximum likelihood estimation (MLE) in Equations (39)-
(42). Two specific scenarios for the parameter values were examined: Case 1, where
(a=2,c=1,b=4,d=3), and Case 2, where (a=4,c=3,b=2,d=1). It should be emphasized that these
parameter values were chosen arbitrarily to illustrate the behavior of the estimators. In Case 1,
we considered a parameter setting where a,c < b,d while in Case 2, the opposite relationship
a,c > b,d was investigated. The resulting bias and MSE for the parameter estimators in both
cases are presented in Tables 1 through 4. All numerical computations were performed using
a MATLAB program.

Table(1) The Bias of the estimators of (a,b,c,d). when (a=2,c=1,b=4 and d=3).

arameters a b c d
Estimators
n=5 MME 3.0309 5.5273 1.3775 4.,2905
MLE 2.9610 5.7576 1.4210 4.4740
n=10 MME 0.8400 1.5475 0.3969 1.1253
MLE 0.9850 1.6651 0.4724 1.2143
n=15 MME 0.5951 0.8081 0.2322 0.5845
MLE 0.5618 0.8901 0.2104 0.6429
n=20 MME 0.3646 0.7927 0.1963 0.5669
MLE 0.3517 0.8500 0.1792 0.6104
n=30 MME 0.2519 0.2395 0.0752 0.2246
MLE 0.2678 0.2933 0.0773 0.2689
Table(2 ) MES of the estimators of (a,b,c,d). when (a=2,c=1,b=4 and d=3).
arameters a b c d
Estimators
n=5 MME 58.7551 235.3628 17.8314 118.3329
MLE 51.0677 239.6029 18.2878 121.2371
n=10 MME 5.5171 9.6759 0.8314 5.2540
MLE 5.5924 10.1622 1.0102 5.5500
n=15 MME 2.3824 5.1362 0.3012 2.7081
MLE 1.9822 5.3426 0.2420 2.8157
n=20 MME 0.7026 3.7932 0.2040 2.1676
MLE 0.6564 3.8197 0.1848 2.1977
n=30 MME 0.5246 1.7351 0.0979 0.9372
MLE 0.4982 1.7256 0.0900 0.9362
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Table(3 ) The Bias of the estimators of (a,b,c,d). when (a=4,c=3,b=2 and d=1).

arameters a b Cc d
Estimators
n=5 MME 4.4189 2.9008 3.0896 1.2041
MLE 4.5585 2.8990 3.2119 1.2610
n=10 MME 1.3683 0.7995 1.1035 0.3186
MLE 1.3931 0.8275 1.1264 0.3269
n=15 MME 0.6717 0.4600 0.5452 0.1756
MLE 0.7373 0.4763 0.5979 0.1806
n=20 MME 0.5211 0.3506 0.4234 0.1510
MLE 0.5643 0.3623 0.4583 0.1531
n=30 MME 0.3390 0.2164 0.1855 0.1028
MLE 0.3491 0.2441 0.1870 0.1135
Table(4 ) MES of the estimators of (a,b,c,d). when (a=4,c=3,b=2 and d=1).
arameters a b c d
Estimators
n=5 MME 95.9743 91.3910 45.3577 13.6211
MLE 94.0243 84.1383 45.0749 13.4095
n=10 MME 10.2379 45377 6.3146 0.8359
MLE 9.7983 4.3752 6.3432 0.8300
n=15 MME 4.0496 1.3517 2.9493 0.2681
MLE 4.0984 1.0974 3.0680 0.2465
n=20 MME 3.1955 0.9875 1.7836 0.2326
MLE 2.8719 0.8531 1.6848 0.1965
n=30 MME 1.2952 0. 6279 0.6207 0.1338
MLE 1.2465 0.5607 0.6959 0.1140

From Table (1), we see that the bias of MMEs for all parameters is less than of the MLEs for
all values of n except for the parameter a for n=5,15 and 20, and parameter ¢ for n=15 and 20.

However the differences in the bias are not significant.

From Table (2), we see that the MSE of MMEs of all parameters is less than that of the
MLEs for all values of n except for the parameter a for n=5,15,20 and 30, parameter b for n
=30, parameter ¢ for n =15,20 and 30 and parameter d for n=30.

Again the differences in the MES between the two estimator are very small.

From Table (3), we see that the bias of MMEs is smallest that of MLEs for all parameters
and all values of n except for the parameter b when n=5.

From Table (4), we see that the differences in the MSE of the two estimator are very small,
but however the MMEs have smaller MSE in most cases.

We may conclude that both estimators perform approximately the same regarding biasness
and MSE.
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